<td style="vertical-align: top;">
<p>
Airspeed Selector: Gate size for sideslip angle fusion
</p>
<p>
<strong>Comment:</strong> Sets the number of standard deviations used by the innovation consistency test.
</p>
</td>
<td style="vertical-align: top;">
1 > 5
</td>
<td style="vertical-align: top;">
1
</td>
<td style="vertical-align: top;">
SD
</td>
ASPD_BETA_NOISE (FLOAT)
<td style="vertical-align: top;">
<p>
Airspeed Selector: Wind estimator sideslip measurement noise
</p>
<p>
<strong>Comment:</strong> Sideslip measurement noise of the internal wind estimator(s) of the airspeed selector.
</p>
</td>
<td style="vertical-align: top;">
0 > 1
</td>
<td style="vertical-align: top;">
0.3
</td>
<td style="vertical-align: top;">
rad
</td>
ASPD_DO_CHECKS (INT32)
<td style="vertical-align: top;">
<p>
Enable checks on airspeed sensors
</p>
<p>
<strong>Comment:</strong> If set to true then the data comming from the airspeed sensors is checked for validity. Only applied if ASPD_PRIMARY > 0.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
ASPD_FALLBACK (INT32)
<td style="vertical-align: top;">
<p>
Enable fallback to secondary airspeed measurement
</p>
<p>
<strong>Comment:</strong> If ASPD_DO_CHECKS is set to true, then airspeed estimation can fallback from what specified in ASPD_PRIMARY to secondary source (other airspeed sensors, groundspeed minus windspeed).
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> To other airspeed sensor (if one valid), else disable airspeed
</li>
<li>
<strong>1:</strong> To other airspeed sensor (if one valid), else to ground-windspeed
</li>
</ul>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
ASPD_FS_INNOV (FLOAT)
<td style="vertical-align: top;">
<p>
Airspeed failsafe consistency threshold (Experimental)
</p>
<p>
<strong>Comment:</strong> This specifies the minimum airspeed test ratio required to trigger a failsafe. Larger values make the check less sensitive, smaller values make it more sensitive. Start with a value of 1.0 when tuning. When tas_test_ratio is > 1.0 it indicates the inconsistency between predicted and measured airspeed is large enough to cause the navigation EKF to reject airspeed measurements. The time required to detect a fault when the threshold is exceeded depends on the size of the exceedance and is controlled by the ASPD_FS_INTEG parameter.
</p>
</td>
<td style="vertical-align: top;">
0.5 > 3.0
</td>
<td style="vertical-align: top;">
1.0
</td>
<td style="vertical-align: top;">
</td>
ASPD_FS_INTEG (FLOAT)
<td style="vertical-align: top;">
<p>
Airspeed failsafe consistency delay (Experimental)
</p>
<p>
<strong>Comment:</strong> This sets the time integral of airspeed test ratio exceedance above ASPD_FS_INNOV required to trigger a failsafe. For example if ASPD_FS_INNOV is 1 and estimator_status.tas_test_ratio is 2.0, then the exceedance is 1.0 and the integral will rise at a rate of 1.0/second. A negative value disables the check. Larger positive values make the check less sensitive, smaller positive values make it more sensitive.
</p>
</td>
<td style="vertical-align: top;">
? > 30.0
</td>
<td style="vertical-align: top;">
-1.0
</td>
<td style="vertical-align: top;">
s
</td>
ASPD_FS_T1 (INT32)
<td style="vertical-align: top;">
<p>
Airspeed failsafe stop delay (Experimental)
</p>
<p>
<strong>Comment:</strong> Delay before stopping use of airspeed sensor if checks indicate sensor is bad.
</p>
</td>
<td style="vertical-align: top;">
1 > 10
</td>
<td style="vertical-align: top;">
3
</td>
<td style="vertical-align: top;">
s
</td>
ASPD_FS_T2 (INT32)
<td style="vertical-align: top;">
<p>
Airspeed failsafe start delay (Experimental)
</p>
<p>
<strong>Comment:</strong> Delay before switching back to using airspeed sensor if checks indicate sensor is good.
</p>
</td>
<td style="vertical-align: top;">
10 > 1000
</td>
<td style="vertical-align: top;">
100
</td>
<td style="vertical-align: top;">
s
</td>
<td style="vertical-align: top;">
<p>
Airspeed scale (scale from IAS to CAS/EAS)
</p>
<p>
<strong>Comment:</strong> Scale can either be entered manually, or estimated in-flight by setting ASPD_SCALE_EST to 1.
</p>
</td>
<td style="vertical-align: top;">
0.5 > 1.5
</td>
<td style="vertical-align: top;">
1.0
</td>
<td style="vertical-align: top;">
</td>
ASPD_SCALE_EST (INT32)
<td style="vertical-align: top;">
<p>
Automatic airspeed scale estimation on
</p>
<p>
<strong>Comment:</strong> Turns the automatic airspeed scale (scale from IAS to CAS/EAS) on or off. It is recommended to fly level altitude while performing the estimation. Set to 1 to start estimation (best when already flying). Set to 0 to end scale estimation. The estimated scale is then saved using the ASPD_SCALE parameter.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
ASPD_SC_P_NOISE (FLOAT)
<td style="vertical-align: top;">
<p>
Airspeed Selector: Wind estimator true airspeed scale process noise
</p>
<p>
<strong>Comment:</strong> Airspeed scale process noise of the internal wind estimator(s) of the airspeed selector.
</p>
</td>
<td style="vertical-align: top;">
0 > 0.1
</td>
<td style="vertical-align: top;">
0.0001
</td>
<td style="vertical-align: top;">
1/s
</td>
ASPD_STALL (FLOAT)
<td style="vertical-align: top;">
<p>
Airspeed fault detection stall airspeed. (Experimental)
</p>
<p>
<strong>Comment:</strong> This is the minimum indicated airspeed at which the wing can produce 1g of lift. It is used by the airspeed sensor fault detection and failsafe calculation to detect a significant airspeed low measurement error condition and should be set based on flight test for reliable operation.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
10.0
</td>
<td style="vertical-align: top;">
m/s
</td>
ASPD_TAS_GATE (INT32)
<td style="vertical-align: top;">
<p>
Airspeed Selector: Gate size for true airspeed fusion
</p>
<p>
<strong>Comment:</strong> Sets the number of standard deviations used by the innovation consistency test.
</p>
</td>
<td style="vertical-align: top;">
1 > 5
</td>
<td style="vertical-align: top;">
3
</td>
<td style="vertical-align: top;">
SD
</td>
ASPD_TAS_NOISE (FLOAT)
<td style="vertical-align: top;">
<p>
Airspeed Selector: Wind estimator true airspeed measurement noise
</p>
<p>
<strong>Comment:</strong> True airspeed measurement noise of the internal wind estimator(s) of the airspeed selector.
</p>
</td>
<td style="vertical-align: top;">
0 > 4
</td>
<td style="vertical-align: top;">
1.4
</td>
<td style="vertical-align: top;">
m/s
</td>
ASPD_W_P_NOISE (FLOAT)
<td style="vertical-align: top;">
<p>
Airspeed Selector: Wind estimator wind process noise
</p>
<p>
<strong>Comment:</strong> Wind process noise of the internal wind estimator(s) of the airspeed selector.
</p>
</td>
<td style="vertical-align: top;">
0 > 1
</td>
<td style="vertical-align: top;">
0.1
</td>
<td style="vertical-align: top;">
m/s/s
</td>
<td style="vertical-align: top;">
<p>
External heading usage mode (from Motion capture/Vision) Set to 1 to use heading estimate from vision. Set to 2 to use heading from motion capture
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> None
</li>
<li>
<strong>1:</strong> Vision
</li>
<li>
<strong>2:</strong> Motion Capture
</li>
</ul>
</td>
<td style="vertical-align: top;">
0 > 2
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
ATT_MAG_DECL (FLOAT)
<td style="vertical-align: top;">
<p>
Magnetic declination, in degrees
</p>
<p>
<strong>Comment:</strong> This parameter is not used in normal operation, as the declination is looked up based on the GPS coordinates of the vehicle.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
deg
</td>
<td style="vertical-align: top;">
<p>
Battery 1 ADC Channel
</p>
<p>
<strong>Comment:</strong> This parameter specifies the ADC channel used to monitor voltage of main power battery. A value of -1 means to use the board default.
</p>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
</td>
BAT1_A_PER_V (FLOAT)
<td style="vertical-align: top;">
<p>
Battery 1 current per volt (A/V)
</p>
<p>
<strong>Comment:</strong> The voltage seen by the 3.3V ADC multiplied by this factor will determine the battery current. A value of -1 means to use the board default.
</p>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
-1.0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Explicitly defines the per cell internal resistance for battery 1
</p>
<p>
<strong>Comment:</strong> If non-negative, then this will be used in place of BAT1_V_LOAD_DROP for all calculations.
</p>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
-1.0 > 0.2 (0.01)
</td>
<td style="vertical-align: top;">
-1.0
</td>
<td style="vertical-align: top;">
Ohm
</td>
BAT1_SOURCE (INT32)
<td style="vertical-align: top;">
<p>
Battery 1 monitoring source
</p>
<p>
<strong>Comment:</strong> This parameter controls the source of battery data. The value 'Power Module' means that measurements are expected to come from a power module. If the value is set to 'External' then the system expects to receive mavlink battery status messages.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Power Module
</li>
<li>
<strong>1:</strong> External
</li>
</ul>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
mAh
</td>
BAT1_V_CHARGED (FLOAT)
<td style="vertical-align: top;">
<p>
Full cell voltage (5C load)
</p>
<p>
<strong>Comment:</strong> Defines the voltage where a single cell of battery 1 is considered full under a mild load. This will never be the nominal voltage of 4.2V
</p>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
(0.01)
</td>
<td style="vertical-align: top;">
4.05
</td>
<td style="vertical-align: top;">
V
</td>
BAT1_V_DIV (FLOAT)
<td style="vertical-align: top;">
<p>
Battery 1 voltage divider (V divider)
</p>
<p>
<strong>Comment:</strong> This is the divider from battery 1 voltage to 3.3V ADC voltage. If using e.g. Mauch power modules the value from the datasheet can be applied straight here. A value of -1 means to use the board default.
</p>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
-1.0
</td>
<td style="vertical-align: top;">
</td>
BAT1_V_EMPTY (FLOAT)
<td style="vertical-align: top;">
<p>
Empty cell voltage (5C load)
</p>
<p>
<strong>Comment:</strong> Defines the voltage where a single cell of battery 1 is considered empty. The voltage should be chosen before the steep dropoff to 2.8V. A typical lithium battery can only be discharged down to 10% before it drops off to a voltage level damaging the cells.
</p>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
(0.01)
</td>
<td style="vertical-align: top;">
3.5
</td>
<td style="vertical-align: top;">
V
</td>
BAT1_V_LOAD_DROP (FLOAT)
<td style="vertical-align: top;">
<p>
Voltage drop per cell on full throttle
</p>
<p>
<strong>Comment:</strong> This implicitely defines the internal resistance to maximum current ratio for battery 1 and assumes linearity. A good value to use is the difference between the 5C and 20-25C load. Not used if BAT1_R_INTERNAL is set.
</p>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
0.07 > 0.5 (0.01)
</td>
<td style="vertical-align: top;">
0.3
</td>
<td style="vertical-align: top;">
V
</td>
BAT2_ADC_CHANNEL (INT32)
<td style="vertical-align: top;">
<p>
Battery 2 ADC Channel
</p>
<p>
<strong>Comment:</strong> This parameter specifies the ADC channel used to monitor voltage of main power battery. A value of -1 means to use the board default.
</p>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
</td>
BAT2_A_PER_V (FLOAT)
<td style="vertical-align: top;">
<p>
Battery 2 current per volt (A/V)
</p>
<p>
<strong>Comment:</strong> The voltage seen by the 3.3V ADC multiplied by this factor will determine the battery current. A value of -1 means to use the board default.
</p>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
-1.0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Explicitly defines the per cell internal resistance for battery 2
</p>
<p>
<strong>Comment:</strong> If non-negative, then this will be used in place of BAT2_V_LOAD_DROP for all calculations.
</p>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
-1.0 > 0.2 (0.01)
</td>
<td style="vertical-align: top;">
-1.0
</td>
<td style="vertical-align: top;">
Ohm
</td>
BAT2_SOURCE (INT32)
<td style="vertical-align: top;">
<p>
Battery 2 monitoring source
</p>
<p>
<strong>Comment:</strong> This parameter controls the source of battery data. The value 'Power Module' means that measurements are expected to come from a power module. If the value is set to 'External' then the system expects to receive mavlink battery status messages.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Power Module
</li>
<li>
<strong>1:</strong> External
</li>
</ul>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
mAh
</td>
BAT2_V_CHARGED (FLOAT)
<td style="vertical-align: top;">
<p>
Full cell voltage (5C load)
</p>
<p>
<strong>Comment:</strong> Defines the voltage where a single cell of battery 1 is considered full under a mild load. This will never be the nominal voltage of 4.2V
</p>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
(0.01)
</td>
<td style="vertical-align: top;">
4.05
</td>
<td style="vertical-align: top;">
V
</td>
BAT2_V_DIV (FLOAT)
<td style="vertical-align: top;">
<p>
Battery 2 voltage divider (V divider)
</p>
<p>
<strong>Comment:</strong> This is the divider from battery 2 voltage to 3.3V ADC voltage. If using e.g. Mauch power modules the value from the datasheet can be applied straight here. A value of -1 means to use the board default.
</p>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
-1.0
</td>
<td style="vertical-align: top;">
</td>
BAT2_V_EMPTY (FLOAT)
<td style="vertical-align: top;">
<p>
Empty cell voltage (5C load)
</p>
<p>
<strong>Comment:</strong> Defines the voltage where a single cell of battery 1 is considered empty. The voltage should be chosen before the steep dropoff to 2.8V. A typical lithium battery can only be discharged down to 10% before it drops off to a voltage level damaging the cells.
</p>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
(0.01)
</td>
<td style="vertical-align: top;">
3.5
</td>
<td style="vertical-align: top;">
V
</td>
BAT2_V_LOAD_DROP (FLOAT)
<td style="vertical-align: top;">
<p>
Voltage drop per cell on full throttle
</p>
<p>
<strong>Comment:</strong> This implicitely defines the internal resistance to maximum current ratio for battery 1 and assumes linearity. A good value to use is the difference between the 5C and 20-25C load. Not used if BAT2_R_INTERNAL is set.
</p>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
0.07 > 0.5 (0.01)
</td>
<td style="vertical-align: top;">
0.3
</td>
<td style="vertical-align: top;">
V
</td>
BAT_ADC_CHANNEL (INT32)
<td style="vertical-align: top;">
<p>
This parameter is deprecated. Please use BAT1_ADC_CHANNEL
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
</td>
BAT_A_PER_V (FLOAT)
<td style="vertical-align: top;">
<p>
This parameter is deprecated. Please use BAT1_A_PER_V
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
-1.0
</td>
<td style="vertical-align: top;">
</td>
BAT_CAPACITY (FLOAT)
<td style="vertical-align: top;">
<p>
This parameter is deprecated. Please use BAT1_CAPACITY instead
</p>
<p>
<strong>Comment:</strong> Defines the capacity of battery 1.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1.0 > 100000 (50)
</td>
<td style="vertical-align: top;">
-1.0
</td>
<td style="vertical-align: top;">
mAh
</td>
BAT_CNT_V_CURR (FLOAT)
<td style="vertical-align: top;">
<p>
Scaling from ADC counts to volt on the ADC input (battery current)
</p>
<p>
<strong>Comment:</strong> This is not the battery current, but the intermediate ADC voltage. A value of -1 signifies that the board defaults are used, which is highly recommended.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
-1.0
</td>
<td style="vertical-align: top;">
</td>
BAT_CNT_V_VOLT (FLOAT)
<td style="vertical-align: top;">
<p>
Scaling from ADC counts to volt on the ADC input (battery voltage)
</p>
<p>
<strong>Comment:</strong> This is not the battery voltage, but the intermediate ADC voltage. A value of -1 signifies that the board defaults are used, which is highly recommended.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
-1.0
</td>
<td style="vertical-align: top;">
</td>
BAT_CRIT_THR (FLOAT)
<td style="vertical-align: top;">
<p>
Critical threshold
</p>
<p>
<strong>Comment:</strong> Sets the threshold when the battery will be reported as critically low. This has to be lower than the low threshold. This threshold commonly will trigger RTL.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0.05 > 0.1 (0.01)
</td>
<td style="vertical-align: top;">
0.07
</td>
<td style="vertical-align: top;">
norm
</td>
BAT_EMERGEN_THR (FLOAT)
<td style="vertical-align: top;">
<p>
Emergency threshold
</p>
<p>
<strong>Comment:</strong> Sets the threshold when the battery will be reported as dangerously low. This has to be lower than the critical threshold. This threshold commonly will trigger landing.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0.03 > 0.07 (0.01)
</td>
<td style="vertical-align: top;">
0.05
</td>
<td style="vertical-align: top;">
norm
</td>
BAT_LOW_THR (FLOAT)
<td style="vertical-align: top;">
<p>
Low threshold
</p>
<p>
<strong>Comment:</strong> Sets the threshold when the battery will be reported as low. This has to be higher than the critical threshold.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0.12 > 0.4 (0.01)
</td>
<td style="vertical-align: top;">
0.15
</td>
<td style="vertical-align: top;">
norm
</td>
<td style="vertical-align: top;">
<p>
This parameter is deprecated. Please use BAT1_R_INTERNAL instead
</p>
<p>
<strong>Comment:</strong> If non-negative, then this will be used in place of BAT_V_LOAD_DROP for all calculations.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1.0 > 0.2
</td>
<td style="vertical-align: top;">
-1.0
</td>
<td style="vertical-align: top;">
Ohms
</td>
BAT_SOURCE (INT32)
<td style="vertical-align: top;">
<p>
This parameter is deprecated. Please use BAT1_SOURCE instead
</p>
<p>
<strong>Comment:</strong> Battery monitoring source. This parameter controls the source of battery data. The value 'Power Module' means that measurements are expected to come from a power module. If the value is set to 'External' then the system expects to receive mavlink battery status messages.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Power Module
</li>
<li>
<strong>1:</strong> External
</li>
</ul>
</td>
<td style="vertical-align: top;">
0 > 1
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
BAT_V_CHARGED (FLOAT)
<td style="vertical-align: top;">
<p>
This parameter is deprecated. Please use BAT1_V_CHARGED instead
</p>
<p>
<strong>Comment:</strong> Defines the voltage where a single cell of battery 1 is considered full under a mild load. This will never be the nominal voltage of 4.2V
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
(0.01)
</td>
<td style="vertical-align: top;">
4.05
</td>
<td style="vertical-align: top;">
V
</td>
BAT_V_DIV (FLOAT)
<td style="vertical-align: top;">
<p>
This parameter is deprecated. Please use BAT1_V_DIV
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
-1.0
</td>
<td style="vertical-align: top;">
</td>
BAT_V_EMPTY (FLOAT)
<td style="vertical-align: top;">
<p>
This parameter is deprecated. Please use BAT1_V_EMPTY instead
</p>
<p>
<strong>Comment:</strong> Defines the voltage where a single cell of battery 1 is considered empty. The voltage should be chosen before the steep dropoff to 2.8V. A typical lithium battery can only be discharged down to 10% before it drops off to a voltage level damaging the cells.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
(0.01)
</td>
<td style="vertical-align: top;">
3.5
</td>
<td style="vertical-align: top;">
V
</td>
BAT_V_LOAD_DROP (FLOAT)
<td style="vertical-align: top;">
<p>
This parameter is deprecated. Please use BAT1_V_LOAD_DROP instead
</p>
<p>
<strong>Comment:</strong> This implicitely defines the internal resistance to maximum current ratio for battery 1 and assumes linearity. A good value to use is the difference between the 5C and 20-25C load. Not used if BAT_R_INTERNAL is set.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0.07 > 0.5 (0.01)
</td>
<td style="vertical-align: top;">
0.3
</td>
<td style="vertical-align: top;">
V
</td>
BAT_V_OFFS_CURR (FLOAT)
<td style="vertical-align: top;">
<p>
Offset in volt as seen by the ADC input of the current sensor
</p>
<p>
<strong>Comment:</strong> This offset will be subtracted before calculating the battery current based on the voltage.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Camera trigger activation time
</p>
<p>
<strong>Comment:</strong> This parameter sets the time the trigger needs to pulled high or low.
</p>
</td>
<td style="vertical-align: top;">
0.1 > 3000
</td>
<td style="vertical-align: top;">
40.0
</td>
<td style="vertical-align: top;">
ms
</td>
TRIG_DISTANCE (FLOAT)
<td style="vertical-align: top;">
<p>
Camera trigger distance
</p>
<p>
<strong>Comment:</strong> Sets the distance at which to trigger the camera.
</p>
</td>
<td style="vertical-align: top;">
0 > ? (1)
</td>
<td style="vertical-align: top;">
25.0
</td>
<td style="vertical-align: top;">
m
</td>
<td style="vertical-align: top;">
<p>
Camera trigger interval
</p>
<p>
<strong>Comment:</strong> This parameter sets the time between two consecutive trigger events
</p>
</td>
<td style="vertical-align: top;">
4.0 > 10000.0
</td>
<td style="vertical-align: top;">
40.0
</td>
<td style="vertical-align: top;">
ms
</td>
TRIG_MODE (INT32)
<td style="vertical-align: top;">
<p>
Camera trigger mode
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Disable
</li>
<li>
<strong>1:</strong> Time based, on command
</li>
<li>
<strong>2:</strong> Time based, always on
</li>
<li>
<strong>3:</strong> Distance based, always on
</li>
<li>
<strong>4:</strong> Distance based, on command (Survey mode)
</li>
</ul>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 4
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
TRIG_PINS (INT32)
<td style="vertical-align: top;">
<p>
Camera trigger pin
</p>
<p>
<strong>Comment:</strong> Selects which FMU pin is used (range: AUX1-AUX6 on Pixhawk controllers with an I/O board, MAIN1-MAIN6 on controllers without an I/O board. The PWM interface takes two pins per camera, while relay triggers on every pin individually. Example: Value 56 would trigger on pins 5 and 6. For GPIO mode Pin 6 will be triggered followed by 5. With a value of 65 pin 5 will be triggered followed by 6. Pins may be non contiguous. I.E. 16 or 61. In GPIO mode the delay pin to pin is < .2 uS.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
1 > 123456
</td>
<td style="vertical-align: top;">
56
</td>
<td style="vertical-align: top;">
</td>
TRIG_POLARITY (INT32)
<td style="vertical-align: top;">
<p>
Camera trigger polarity
</p>
<p>
<strong>Comment:</strong> This parameter sets the polarity of the trigger (0 = active low, 1 = active high )
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Active low
</li>
<li>
<strong>1:</strong> Active high
</li>
</ul>
</td>
<td style="vertical-align: top;">
0 > 1
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Circuit breaker for airspeed sensor
</p>
<p>
<strong>Comment:</strong> Setting this parameter to 162128 will disable the check for an airspeed sensor. The sensor driver will not be started and it cannot be calibrated. WARNING: ENABLING THIS CIRCUIT BREAKER IS AT OWN RISK
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 162128
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
CBRK_BUZZER (INT32)
<td style="vertical-align: top;">
<p>
Circuit breaker for disabling buzzer
</p>
<p>
<strong>Comment:</strong> Setting this parameter to 782097 will disable the buzzer audio notification. Setting this parameter to 782090 will disable the startup tune, while keeping all others enabled.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 782097
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
CBRK_ENGINEFAIL (INT32)
<td style="vertical-align: top;">
<p>
Circuit breaker for engine failure detection
</p>
<p>
<strong>Comment:</strong> Setting this parameter to 284953 will disable the engine failure detection. If the aircraft is in engine failure mode the engine failure flag will be set to healthy WARNING: ENABLING THIS CIRCUIT BREAKER IS AT OWN RISK
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 284953
</td>
<td style="vertical-align: top;">
284953
</td>
<td style="vertical-align: top;">
</td>
CBRK_FLIGHTTERM (INT32)
<td style="vertical-align: top;">
<p>
Circuit breaker for flight termination
</p>
<p>
<strong>Comment:</strong> Setting this parameter to 121212 will disable the flight termination action if triggered by the FailureDetector logic or if FMU is lost. This circuit breaker does not affect the RC loss, data link loss and geofence safety logic.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 121212
</td>
<td style="vertical-align: top;">
121212
</td>
<td style="vertical-align: top;">
</td>
CBRK_IO_SAFETY (INT32)
<td style="vertical-align: top;">
<p>
Circuit breaker for IO safety
</p>
<p>
<strong>Comment:</strong> Setting this parameter to 22027 will disable IO safety. WARNING: ENABLING THIS CIRCUIT BREAKER IS AT OWN RISK
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 22027
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
CBRK_RATE_CTRL (INT32)
<td style="vertical-align: top;">
<p>
Circuit breaker for rate controller output
</p>
<p>
<strong>Comment:</strong> Setting this parameter to 140253 will disable the rate controller uORB publication. WARNING: ENABLING THIS CIRCUIT BREAKER IS AT OWN RISK
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 140253
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
CBRK_SUPPLY_CHK (INT32)
<td style="vertical-align: top;">
<p>
Circuit breaker for power supply check
</p>
<p>
<strong>Comment:</strong> Setting this parameter to 894281 will disable the power valid checks in the commander. WARNING: ENABLING THIS CIRCUIT BREAKER IS AT OWN RISK
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 894281
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
CBRK_USB_CHK (INT32)
<td style="vertical-align: top;">
<p>
Circuit breaker for USB link check
</p>
<p>
<strong>Comment:</strong> Setting this parameter to 197848 will disable the USB connected checks in the commander. WARNING: ENABLING THIS CIRCUIT BREAKER IS AT OWN RISK
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 197848
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
CBRK_VELPOSERR (INT32)
<td style="vertical-align: top;">
<p>
Circuit breaker for position error check
</p>
<p>
<strong>Comment:</strong> Setting this parameter to 201607 will disable the position and velocity accuracy checks in the commander. WARNING: ENABLING THIS CIRCUIT BREAKER IS AT OWN RISK
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 201607
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
CBRK_VTOLARMING (INT32)
<td style="vertical-align: top;">
<p>
Circuit breaker for arming in fixed-wing mode check
</p>
<p>
<strong>Comment:</strong> Setting this parameter to 159753 will enable arming in fixed-wing mode for VTOLs. WARNING: ENABLING THIS CIRCUIT BREAKER IS AT OWN RISK
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 159753
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Arm authorization parameters, this uint32_t will be split between starting from the LSB: - 8bits to authorizer system id - 16bits to authentication method parameter, this will be used to store a timeout for the first 2 methods but can be used to another parameter for other new authentication methods. - 7bits to authentication method - one arm = 0 - two step arm = 1 * the MSB bit is not used to avoid problems in the conversion between int and uint
</p>
<p>
<strong>Comment:</strong> Default value: (10 << 0 | 1000 << 8 | 0 << 24) = 256010 - authorizer system id = 10 - authentication method parameter = 10000msec of timeout - authentication method = during arm
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
256010
</td>
<td style="vertical-align: top;">
</td>
COM_ARM_AUTH_REQ (INT32)
<td style="vertical-align: top;">
<p>
Require arm authorization to arm
</p>
<p>
<strong>Comment:</strong> The default allows to arm the vehicle without a arm authorization.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
COM_ARM_CHK_ESCS (INT32)
<td style="vertical-align: top;">
<p>
Require all the ESCs to be detected to arm
</p>
<p>
<strong>Comment:</strong> This param is specific for ESCs reporting status. Normal ESCs configurations are not affected by the change of this param.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Enabled (1)
</td>
<td style="vertical-align: top;">
</td>
COM_ARM_EKF_AB (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum value of EKF accelerometer delta velocity bias estimate that will allow arming. Note: ekf2 will limit the delta velocity bias estimate magnitude to be less than EKF2_ABL_LIM * FILTER_UPDATE_PERIOD_MS * 0.001 so this parameter must be less than that to be useful
</p>
</td>
<td style="vertical-align: top;">
0.001 > 0.01 (0.0001)
</td>
<td style="vertical-align: top;">
1.73e-3
</td>
<td style="vertical-align: top;">
m/s
</td>
COM_ARM_EKF_GB (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum value of EKF gyro delta angle bias estimate that will allow arming
</p>
</td>
<td style="vertical-align: top;">
0.0001 > 0.0017 (0.0001)
</td>
<td style="vertical-align: top;">
8.7e-4
</td>
<td style="vertical-align: top;">
rad
</td>
COM_ARM_EKF_HGT (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum EKF height innovation test ratio that will allow arming
</p>
</td>
<td style="vertical-align: top;">
0.1 > 1.0 (0.05)
</td>
<td style="vertical-align: top;">
1.0
</td>
<td style="vertical-align: top;">
</td>
COM_ARM_EKF_POS (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum EKF position innovation test ratio that will allow arming
</p>
</td>
<td style="vertical-align: top;">
0.1 > 1.0 (0.05)
</td>
<td style="vertical-align: top;">
0.5
</td>
<td style="vertical-align: top;">
</td>
COM_ARM_EKF_VEL (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum EKF velocity innovation test ratio that will allow arming
</p>
</td>
<td style="vertical-align: top;">
0.1 > 1.0 (0.05)
</td>
<td style="vertical-align: top;">
0.5
</td>
<td style="vertical-align: top;">
</td>
COM_ARM_EKF_YAW (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum EKF yaw innovation test ratio that will allow arming
</p>
</td>
<td style="vertical-align: top;">
0.1 > 1.0 (0.05)
</td>
<td style="vertical-align: top;">
0.5
</td>
<td style="vertical-align: top;">
</td>
COM_ARM_IMU_ACC (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum accelerometer inconsistency between IMU units that will allow arming
</p>
</td>
<td style="vertical-align: top;">
0.1 > 1.0 (0.05)
</td>
<td style="vertical-align: top;">
0.7
</td>
<td style="vertical-align: top;">
m/s/s
</td>
COM_ARM_IMU_GYR (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum rate gyro inconsistency between IMU units that will allow arming
</p>
</td>
<td style="vertical-align: top;">
0.02 > 0.3 (0.01)
</td>
<td style="vertical-align: top;">
0.25
</td>
<td style="vertical-align: top;">
rad/s
</td>
COM_ARM_MAG_ANG (INT32)
<td style="vertical-align: top;">
<p>
Maximum magnetic field inconsistency between units that will allow arming Set -1 to disable the check
</p>
</td>
<td style="vertical-align: top;">
3 > 180
</td>
<td style="vertical-align: top;">
30
</td>
<td style="vertical-align: top;">
deg
</td>
COM_ARM_MAG_STR (INT32)
<td style="vertical-align: top;">
<p>
Enable mag strength preflight check
</p>
<p>
<strong>Comment:</strong> Deny arming if the estimator detects a strong magnetic disturbance (check enabled by EKF2_MAG_CHECK)
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Enabled (1)
</td>
<td style="vertical-align: top;">
</td>
COM_ARM_MIS_REQ (INT32)
<td style="vertical-align: top;">
<p>
Require valid mission to arm
</p>
<p>
<strong>Comment:</strong> The default allows to arm the vehicle without a valid mission.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
COM_ARM_SWISBTN (INT32)
<td style="vertical-align: top;">
<p>
Arm switch is only a button
</p>
<p>
<strong>Comment:</strong> The default uses the arm switch as real switch. If parameter set button gets handled like stick arming.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
COM_ARM_WO_GPS (INT32)
<td style="vertical-align: top;">
<p>
Allow arming without GPS
</p>
<p>
<strong>Comment:</strong> The default allows to arm the vehicle without GPS signal.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Enabled (1)
</td>
<td style="vertical-align: top;">
</td>
COM_DISARM_LAND (FLOAT)
<td style="vertical-align: top;">
<p>
Time-out for auto disarm after landing
</p>
<p>
<strong>Comment:</strong> A non-zero, positive value specifies the time-out period in seconds after which the vehicle will be automatically disarmed in case a landing situation has been detected during this period. A zero or negative value means that automatic disarming triggered by landing detection is disabled.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
2.0
</td>
<td style="vertical-align: top;">
s
</td>
COM_DISARM_PRFLT (FLOAT)
<td style="vertical-align: top;">
<p>
Time-out for auto disarm if too slow to takeoff
</p>
<p>
<strong>Comment:</strong> A non-zero, positive value specifies the time after arming, in seconds, within which the vehicle must take off (after which it will automatically disarm). A zero or negative value means that automatic disarming triggered by a pre-takeoff timeout is disabled.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
10.0
</td>
<td style="vertical-align: top;">
s
</td>
COM_DL_LOSS_T (INT32)
<td style="vertical-align: top;">
<p>
Datalink loss time threshold
</p>
<p>
<strong>Comment:</strong> After this amount of seconds without datalink the data link lost mode triggers
</p>
</td>
<td style="vertical-align: top;">
5 > 300 (0.5)
</td>
<td style="vertical-align: top;">
10
</td>
<td style="vertical-align: top;">
s
</td>
COM_EF_C2T (FLOAT)
<td style="vertical-align: top;">
<p>
Engine Failure Current/Throttle Threshold
</p>
<p>
<strong>Comment:</strong> Engine failure triggers only below this current value
</p>
</td>
<td style="vertical-align: top;">
0.0 > 50.0 (1)
</td>
<td style="vertical-align: top;">
5.0
</td>
<td style="vertical-align: top;">
A/%
</td>
<td style="vertical-align: top;">
<p>
Engine Failure Time Threshold
</p>
<p>
<strong>Comment:</strong> Engine failure triggers only if the throttle threshold and the current to throttle threshold are violated for this time
</p>
</td>
<td style="vertical-align: top;">
0.0 > 60.0 (1)
</td>
<td style="vertical-align: top;">
10.0
</td>
<td style="vertical-align: top;">
s
</td>
COM_FLIGHT_UUID (INT32)
<td style="vertical-align: top;">
<p>
Next flight UUID
</p>
<p>
<strong>Comment:</strong> This number is incremented automatically after every flight on disarming in order to remember the next flight UUID. The first flight is 0.
</p>
</td>
<td style="vertical-align: top;">
0 > ?
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
COM_FLTMODE1 (INT32)
<td style="vertical-align: top;">
<p>
First flightmode slot (1000-1160)
</p>
<p>
<strong>Comment:</strong> If the main switch channel is in this range the selected flight mode will be applied.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>-1:</strong> Unassigned
</li>
<li>
<strong>0:</strong> Manual
</li>
<li>
<strong>1:</strong> Altitude
</li>
<li>
<strong>2:</strong> Position
</li>
<li>
<strong>3:</strong> Mission
</li>
<li>
<strong>4:</strong> Hold
</li>
<li>
<strong>5:</strong> Return
</li>
<li>
<strong>6:</strong> Acro
</li>
<li>
<strong>7:</strong> Offboard
</li>
<li>
<strong>8:</strong> Stabilized
</li>
<li>
<strong>9:</strong> Rattitude
</li>
<li>
<strong>10:</strong> Takeoff
</li>
<li>
<strong>11:</strong> Land
</li>
<li>
<strong>12:</strong> Follow Me
</li>
</ul>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
</td>
COM_FLTMODE2 (INT32)
<td style="vertical-align: top;">
<p>
Second flightmode slot (1160-1320)
</p>
<p>
<strong>Comment:</strong> If the main switch channel is in this range the selected flight mode will be applied.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>-1:</strong> Unassigned
</li>
<li>
<strong>0:</strong> Manual
</li>
<li>
<strong>1:</strong> Altitude
</li>
<li>
<strong>2:</strong> Position
</li>
<li>
<strong>3:</strong> Mission
</li>
<li>
<strong>4:</strong> Hold
</li>
<li>
<strong>5:</strong> Return
</li>
<li>
<strong>6:</strong> Acro
</li>
<li>
<strong>7:</strong> Offboard
</li>
<li>
<strong>8:</strong> Stabilized
</li>
<li>
<strong>9:</strong> Rattitude
</li>
<li>
<strong>10:</strong> Takeoff
</li>
<li>
<strong>11:</strong> Land
</li>
<li>
<strong>12:</strong> Follow Me
</li>
</ul>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
</td>
COM_FLTMODE3 (INT32)
<td style="vertical-align: top;">
<p>
Third flightmode slot (1320-1480)
</p>
<p>
<strong>Comment:</strong> If the main switch channel is in this range the selected flight mode will be applied.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>-1:</strong> Unassigned
</li>
<li>
<strong>0:</strong> Manual
</li>
<li>
<strong>1:</strong> Altitude
</li>
<li>
<strong>2:</strong> Position
</li>
<li>
<strong>3:</strong> Mission
</li>
<li>
<strong>4:</strong> Hold
</li>
<li>
<strong>5:</strong> Return
</li>
<li>
<strong>6:</strong> Acro
</li>
<li>
<strong>7:</strong> Offboard
</li>
<li>
<strong>8:</strong> Stabilized
</li>
<li>
<strong>9:</strong> Rattitude
</li>
<li>
<strong>10:</strong> Takeoff
</li>
<li>
<strong>11:</strong> Land
</li>
<li>
<strong>12:</strong> Follow Me
</li>
</ul>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
</td>
COM_FLTMODE4 (INT32)
<td style="vertical-align: top;">
<p>
Fourth flightmode slot (1480-1640)
</p>
<p>
<strong>Comment:</strong> If the main switch channel is in this range the selected flight mode will be applied.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>-1:</strong> Unassigned
</li>
<li>
<strong>0:</strong> Manual
</li>
<li>
<strong>1:</strong> Altitude
</li>
<li>
<strong>2:</strong> Position
</li>
<li>
<strong>3:</strong> Mission
</li>
<li>
<strong>4:</strong> Hold
</li>
<li>
<strong>5:</strong> Return
</li>
<li>
<strong>6:</strong> Acro
</li>
<li>
<strong>7:</strong> Offboard
</li>
<li>
<strong>8:</strong> Stabilized
</li>
<li>
<strong>9:</strong> Rattitude
</li>
<li>
<strong>10:</strong> Takeoff
</li>
<li>
<strong>11:</strong> Land
</li>
<li>
<strong>12:</strong> Follow Me
</li>
</ul>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
</td>
COM_FLTMODE5 (INT32)
<td style="vertical-align: top;">
<p>
Fifth flightmode slot (1640-1800)
</p>
<p>
<strong>Comment:</strong> If the main switch channel is in this range the selected flight mode will be applied.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>-1:</strong> Unassigned
</li>
<li>
<strong>0:</strong> Manual
</li>
<li>
<strong>1:</strong> Altitude
</li>
<li>
<strong>2:</strong> Position
</li>
<li>
<strong>3:</strong> Mission
</li>
<li>
<strong>4:</strong> Hold
</li>
<li>
<strong>5:</strong> Return
</li>
<li>
<strong>6:</strong> Acro
</li>
<li>
<strong>7:</strong> Offboard
</li>
<li>
<strong>8:</strong> Stabilized
</li>
<li>
<strong>9:</strong> Rattitude
</li>
<li>
<strong>10:</strong> Takeoff
</li>
<li>
<strong>11:</strong> Land
</li>
<li>
<strong>12:</strong> Follow Me
</li>
</ul>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
</td>
COM_FLTMODE6 (INT32)
<td style="vertical-align: top;">
<p>
Sixth flightmode slot (1800-2000)
</p>
<p>
<strong>Comment:</strong> If the main switch channel is in this range the selected flight mode will be applied.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>-1:</strong> Unassigned
</li>
<li>
<strong>0:</strong> Manual
</li>
<li>
<strong>1:</strong> Altitude
</li>
<li>
<strong>2:</strong> Position
</li>
<li>
<strong>3:</strong> Mission
</li>
<li>
<strong>4:</strong> Hold
</li>
<li>
<strong>5:</strong> Return
</li>
<li>
<strong>6:</strong> Acro
</li>
<li>
<strong>7:</strong> Offboard
</li>
<li>
<strong>8:</strong> Stabilized
</li>
<li>
<strong>9:</strong> Rattitude
</li>
<li>
<strong>10:</strong> Takeoff
</li>
<li>
<strong>11:</strong> Land
</li>
<li>
<strong>12:</strong> Follow Me
</li>
</ul>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
</td>
COM_FLT_PROFILE (INT32)
<td style="vertical-align: top;">
<p>
User Flight Profile
</p>
<p>
<strong>Comment:</strong> Describes the intended use of the vehicle. Can be used by ground control software or log post processing. This param does not influence the behavior within the firmware. This means for example the control logic is independent of the setting of this param (but depends on other params).
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Default
</li>
<li>
<strong>100:</strong> Pro User
</li>
<li>
<strong>200:</strong> Flight Tester
</li>
<li>
<strong>300:</strong> Developer
</li>
</ul>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
COM_HLDL_LOSS_T (INT32)
<td style="vertical-align: top;">
<p>
High Latency Datalink loss time threshold
</p>
<p>
<strong>Comment:</strong> After this amount of seconds without datalink the data link lost mode triggers
</p>
</td>
<td style="vertical-align: top;">
60 > 3600
</td>
<td style="vertical-align: top;">
120
</td>
<td style="vertical-align: top;">
s
</td>
COM_HLDL_REG_T (INT32)
<td style="vertical-align: top;">
<p>
High Latency Datalink regain time threshold
</p>
<p>
<strong>Comment:</strong> After a data link loss: after this this amount of seconds with a healthy datalink the 'datalink loss' flag is set back to false
</p>
</td>
<td style="vertical-align: top;">
0 > 60
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
s
</td>
COM_HOME_H_T (FLOAT)
<td style="vertical-align: top;">
<p>
Home set horizontal threshold
</p>
<p>
<strong>Comment:</strong> The home position will be set if the estimated positioning accuracy is below the threshold.
</p>
</td>
<td style="vertical-align: top;">
2 > 15 (0.5)
</td>
<td style="vertical-align: top;">
5.0
</td>
<td style="vertical-align: top;">
m
</td>
COM_HOME_V_T (FLOAT)
<td style="vertical-align: top;">
<p>
Home set vertical threshold
</p>
<p>
<strong>Comment:</strong> The home position will be set if the estimated positioning accuracy is below the threshold.
</p>
</td>
<td style="vertical-align: top;">
5 > 25 (0.5)
</td>
<td style="vertical-align: top;">
10.0
</td>
<td style="vertical-align: top;">
m
</td>
COM_KILL_DISARM (FLOAT)
<td style="vertical-align: top;">
<p>
Timeout value for disarming when kill switch is engaged
</p>
</td>
<td style="vertical-align: top;">
0.0 > 30.0 (0.1)
</td>
<td style="vertical-align: top;">
5.0
</td>
<td style="vertical-align: top;">
s
</td>
COM_LOW_BAT_ACT (INT32)
<td style="vertical-align: top;">
<p>
Battery failsafe mode
</p>
<p>
<strong>Comment:</strong> Action the system takes at critical battery. See also BAT_CRIT_THR and BAT_EMERGEN_THR for definition of battery states.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Warning
</li>
<li>
<strong>2:</strong> Land mode
</li>
<li>
<strong>3:</strong> Return at critical level, land at emergency level
</li>
</ul>
</td>
<td style="vertical-align: top;">
(1)
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
COM_MOT_TEST_EN (INT32)
<td style="vertical-align: top;">
<p>
Enable Motor Testing
</p>
<p>
<strong>Comment:</strong> If set, enables the motor test interface via MAVLink (DO_MOTOR_TEST), that allows spinning the motors for testing purposes.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Enabled (1)
</td>
<td style="vertical-align: top;">
</td>
COM_OA_BOOT_T (INT32)
<td style="vertical-align: top;">
<p>
Set avoidance system bootup timeout
</p>
<p>
<strong>Comment:</strong> The avoidance system running on the companion computer is expected to boot within this time and start providing trajectory points. If no avoidance system is detected a MAVLink warning message is sent.
</p>
</td>
<td style="vertical-align: top;">
0 > 200
</td>
<td style="vertical-align: top;">
100
</td>
<td style="vertical-align: top;">
s
</td>
COM_OBL_ACT (INT32)
<td style="vertical-align: top;">
<p>
Set offboard loss failsafe mode
</p>
<p>
<strong>Comment:</strong> The offboard loss failsafe will only be entered after a timeout, set by COM_OF_LOSS_T in seconds.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>-1:</strong> Disabled
</li>
<li>
<strong>0:</strong> Land mode
</li>
<li>
<strong>1:</strong> Hold mode
</li>
<li>
<strong>2:</strong> Return mode
</li>
<li>
<strong>3:</strong> Terminate
</li>
<li>
<strong>4:</strong> Lockdown
</li>
</ul>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
COM_OBL_RC_ACT (INT32)
<td style="vertical-align: top;">
<p>
Set offboard loss failsafe mode when RC is available
</p>
<p>
<strong>Comment:</strong> The offboard loss failsafe will only be entered after a timeout, set by COM_OF_LOSS_T in seconds.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>-1:</strong> Disabled
</li>
<li>
<strong>0:</strong> Position mode
</li>
<li>
<strong>1:</strong> Altitude mode
</li>
<li>
<strong>2:</strong> Manual
</li>
<li>
<strong>3:</strong> Return mode
</li>
<li>
<strong>4:</strong> Land mode
</li>
<li>
<strong>5:</strong> Hold mode
</li>
<li>
<strong>6:</strong> Terminate
</li>
<li>
<strong>7:</strong> Lockdown
</li>
</ul>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
COM_OF_LOSS_T (FLOAT)
<td style="vertical-align: top;">
<p>
Time-out to wait when offboard connection is lost before triggering offboard lost action. See COM_OBL_ACT and COM_OBL_RC_ACT to configure action
</p>
</td>
<td style="vertical-align: top;">
0 > 60 (1)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
s
</td>
COM_POSCTL_NAVL (INT32)
<td style="vertical-align: top;">
<p>
Position control navigation loss response
</p>
<p>
<strong>Comment:</strong> This sets the flight mode that will be used if navigation accuracy is no longer adequate for position control. Navigation accuracy checks can be disabled using the CBRK_VELPOSERR parameter, but doing so will remove protection for all flight modes.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Altitude/Manual. Assume use of remote control after fallback. Switch to Altitude mode if a height estimate is available, else switch to MANUAL.
</li>
<li>
<strong>1:</strong> Land/Terminate. Assume no use of remote control after fallback. Switch to Land mode if a height estimate is available, else switch to TERMINATION.
</li>
</ul>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
COM_POS_FS_DELAY (INT32)
<td style="vertical-align: top;">
<p>
Loss of position failsafe activation delay
</p>
<p>
<strong>Comment:</strong> This sets number of seconds that the position checks need to be failed before the failsafe will activate. The default value has been optimised for rotary wing applications. For fixed wing applications, a larger value between 5 and 10 should be used.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
1 > 100
</td>
<td style="vertical-align: top;">
1
</td>
<td style="vertical-align: top;">
sec
</td>
COM_POS_FS_EPH (FLOAT)
<td style="vertical-align: top;">
<p>
Horizontal position error threshold
</p>
<p>
<strong>Comment:</strong> This is the horizontal position error (EPH) threshold that will trigger a failsafe. The default is appropriate for a multicopter. Can be increased for a fixed-wing.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
5
</td>
<td style="vertical-align: top;">
m
</td>
COM_POS_FS_EPV (FLOAT)
<td style="vertical-align: top;">
<p>
Vertical position error threshold
</p>
<p>
<strong>Comment:</strong> This is the vertical position error (EPV) threshold that will trigger a failsafe. The default is appropriate for a multicopter. Can be increased for a fixed-wing.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
10
</td>
<td style="vertical-align: top;">
m
</td>
COM_POS_FS_GAIN (INT32)
<td style="vertical-align: top;">
<p>
Loss of position probation gain factor
</p>
<p>
<strong>Comment:</strong> This sets the rate that the loss of position probation time grows when position checks are failing. The default value has been optimised for rotary wing applications. For fixed wing applications a value of 0 should be used.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
10
</td>
<td style="vertical-align: top;">
</td>
COM_POS_FS_PROB (INT32)
<td style="vertical-align: top;">
<p>
Loss of position probation delay at takeoff
</p>
<p>
<strong>Comment:</strong> The probation delay is the number of seconds that the EKF innovation checks need to pass for the position to be declared good after it has been declared bad. The probation delay will be reset to this parameter value when takeoff is detected. After takeoff, if position checks are passing, the probation delay will reduce by one second for every lapsed second of valid position down to a minimum of 1 second. If position checks are failing, the probation delay will increase by COM_POS_FS_GAIN seconds for every lapsed second up to a maximum of 100 seconds. The default value has been optimised for rotary wing applications. For fixed wing applications, a value of 1 should be used.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
1 > 100
</td>
<td style="vertical-align: top;">
30
</td>
<td style="vertical-align: top;">
sec
</td>
COM_PREARM_MODE (INT32)
<td style="vertical-align: top;">
<p>
Condition to enter prearmed mode
</p>
<p>
<strong>Comment:</strong> Condition to enter the prearmed state, an intermediate state between disarmed and armed in which non-throttling actuators are active.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Disabled
</li>
<li>
<strong>1:</strong> Safety button
</li>
<li>
<strong>2:</strong> Always
</li>
</ul>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
1
</td>
<td style="vertical-align: top;">
</td>
COM_RC_ARM_HYST (INT32)
<td style="vertical-align: top;">
<p>
RC input arm/disarm command duration
</p>
<p>
<strong>Comment:</strong> The default value of 1000 requires the stick to be held in the arm or disarm position for 1 second.
</p>
</td>
<td style="vertical-align: top;">
100 > 1500
</td>
<td style="vertical-align: top;">
1000
</td>
<td style="vertical-align: top;">
</td>
COM_RC_IN_MODE (INT32)
<td style="vertical-align: top;">
<p>
RC control input mode
</p>
<p>
<strong>Comment:</strong> The default value of 0 requires a valid RC transmitter setup. Setting this to 1 allows joystick control and disables RC input handling and the associated checks. A value of 2 will generate RC control data from manual input received via MAVLink instead of directly forwarding the manual input data.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> RC Transmitter
</li>
<li>
<strong>1:</strong> Joystick/No RC Checks
</li>
<li>
<strong>2:</strong> Virtual RC by Joystick
</li>
</ul>
</td>
<td style="vertical-align: top;">
0 > 2
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
COM_RC_LOSS_T (FLOAT)
<td style="vertical-align: top;">
<p>
RC loss time threshold
</p>
<p>
<strong>Comment:</strong> After this amount of seconds without RC connection the rc lost flag is set to true
</p>
</td>
<td style="vertical-align: top;">
0 > 35 (0.1)
</td>
<td style="vertical-align: top;">
0.5
</td>
<td style="vertical-align: top;">
s
</td>
COM_RC_OVERRIDE (INT32)
<td style="vertical-align: top;">
<p>
Enable RC stick override of auto and/or offboard modes
</p>
<p>
<strong>Comment:</strong> When RC stick override is enabled, moving the RC sticks immediately gives control back to the pilot (switches to manual position mode): bit 0: Enable for auto modes (except for in critical battery reaction), bit 1: Enable for offboard mode. Only has an effect on multicopters, and VTOLS in multicopter mode.
</p>
<strong>Bitmask:</strong>
<ul>
<li>
<strong>0:</strong> Enable override in auto modes
</li>
<li>
<strong>1:</strong> Enable override in offboard mode
</li>
</ul>
</td>
<td style="vertical-align: top;">
0 > 3
</td>
<td style="vertical-align: top;">
1
</td>
<td style="vertical-align: top;">
</td>
COM_RC_STICK_OV (FLOAT)
<td style="vertical-align: top;">
<p>
RC stick override threshold
</p>
<p>
<strong>Comment:</strong> If an RC stick is moved more than by this amount the system will interpret this as override request by the pilot.
</p>
</td>
<td style="vertical-align: top;">
5 > 40 (0.05)
</td>
<td style="vertical-align: top;">
12.0
</td>
<td style="vertical-align: top;">
%
</td>
COM_VEL_FS_EVH (FLOAT)
<td style="vertical-align: top;">
<p>
Horizontal velocity error threshold
</p>
<p>
<strong>Comment:</strong> This is the horizontal velocity error (EVH) threshold that will trigger a failsafe. The default is appropriate for a multicopter. Can be increased for a fixed-wing.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
1
</td>
<td style="vertical-align: top;">
m/s
</td>
<td style="vertical-align: top;">
<p>
Configure DShot
</p>
<p>
<strong>Comment:</strong> This enables/disables DShot. The different modes define different speeds, for example DShot150 = 150kb/s. Not all ESCs support all modes. Note: this enables DShot on the FMU outputs. For boards with an IO it is the AUX outputs.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Disable (use PWM/Oneshot)
</li>
<li>
<strong>150:</strong> DShot150
</li>
<li>
<strong>300:</strong> DShot300
</li>
<li>
<strong>600:</strong> DShot600
</li>
<li>
<strong>1200:</strong> DShot1200
</li>
</ul>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
DSHOT_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
Minimum DShot Motor Output
</p>
<p>
<strong>Comment:</strong> Minimum Output Value for DShot in percent. The value depends on the ESC. Make sure to set this high enough so that the motors are always spinning while armed.
</p>
</td>
<td style="vertical-align: top;">
0 > 1 (0.01)
</td>
<td style="vertical-align: top;">
0.055
</td>
<td style="vertical-align: top;">
%
</td>
<td style="vertical-align: top;">
<p>
Number of magnetic poles of the motors
</p>
<p>
<strong>Comment:</strong> Specify the number of magnetic poles of the motors. It is required to compute the RPM value from the eRPM returned with the ESC telemetry. Either get the number from the motor spec sheet or count the magnets on the bell of the motor (not the stator magnets). Typical motors for 5 inch props have 14 poles.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
14
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Airfield home wait time
</p>
<p>
<strong>Comment:</strong> The amount of time in seconds the system should wait at the airfield home waypoint
</p>
</td>
<td style="vertical-align: top;">
0.0 > 3600.0 (1)
</td>
<td style="vertical-align: top;">
120.0
</td>
<td style="vertical-align: top;">
s
</td>
NAV_DLL_CHSK (INT32)
<td style="vertical-align: top;">
<p>
Skip comms hold wp
</p>
<p>
<strong>Comment:</strong> If set to 1 the system will skip the comms hold wp on data link loss and will directly fly to airfield home
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
NAV_DLL_CH_ALT (FLOAT)
<td style="vertical-align: top;">
<p>
Comms hold alt
</p>
<p>
<strong>Comment:</strong> Altitude of comms hold waypoint
</p>
</td>
<td style="vertical-align: top;">
-50 > 30000 (0.5)
</td>
<td style="vertical-align: top;">
600.0
</td>
<td style="vertical-align: top;">
m
</td>
NAV_DLL_CH_LAT (INT32)
<td style="vertical-align: top;">
<p>
Comms hold Lat
</p>
<p>
<strong>Comment:</strong> Latitude of comms hold waypoint
</p>
</td>
<td style="vertical-align: top;">
-900000000 > 900000000
</td>
<td style="vertical-align: top;">
-266072120
</td>
<td style="vertical-align: top;">
deg * 1e7
</td>
<td style="vertical-align: top;">
<p>
Comms hold wait time
</p>
<p>
<strong>Comment:</strong> The amount of time in seconds the system should wait at the comms hold waypoint
</p>
</td>
<td style="vertical-align: top;">
0.0 > 3600.0 (1)
</td>
<td style="vertical-align: top;">
120.0
</td>
<td style="vertical-align: top;">
s
</td>
NAV_DLL_N (INT32)
<td style="vertical-align: top;">
<p>
Number of allowed Datalink timeouts
</p>
<p>
<strong>Comment:</strong> After more than this number of data link timeouts the aircraft returns home directly
</p>
</td>
<td style="vertical-align: top;">
0 > 1000
</td>
<td style="vertical-align: top;">
2
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Maximum IMU accel magnitude that allows IMU bias learning. If the magnitude of the IMU accelerometer vector exceeds this value, the EKF delta velocity state estimation will be inhibited. This reduces the adverse effect of high manoeuvre accelerations and IMU nonlinerity and scale factor errors on the delta velocity bias estimates
</p>
</td>
<td style="vertical-align: top;">
20.0 > 200.0
</td>
<td style="vertical-align: top;">
25.0
</td>
<td style="vertical-align: top;">
m/s/s
</td>
EKF2_ABL_GYRLIM (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum IMU gyro angular rate magnitude that allows IMU bias learning. If the magnitude of the IMU angular rate vector exceeds this value, the EKF delta velocity state estimation will be inhibited. This reduces the adverse effect of rapid rotation rates and associated errors on the delta velocity bias estimates
</p>
</td>
<td style="vertical-align: top;">
2.0 > 20.0
</td>
<td style="vertical-align: top;">
3.0
</td>
<td style="vertical-align: top;">
rad/s
</td>
EKF2_ABL_LIM (FLOAT)
<td style="vertical-align: top;">
<p>
Accelerometer bias learning limit. The ekf delta velocity bias states will be limited to within a range equivalent to +- of this value
</p>
</td>
<td style="vertical-align: top;">
0.0 > 0.8
</td>
<td style="vertical-align: top;">
0.4
</td>
<td style="vertical-align: top;">
m/s/s
</td>
EKF2_ABL_TAU (FLOAT)
<td style="vertical-align: top;">
<p>
Time constant used by acceleration and angular rate magnitude checks used to inhibit delta velocity bias learning. The vector magnitude of angular rate and acceleration used to check if learning should be inhibited has a peak hold filter applied to it with an exponential decay. This parameter controls the time constant of the decay
</p>
</td>
<td style="vertical-align: top;">
0.1 > 1.0
</td>
<td style="vertical-align: top;">
0.5
</td>
<td style="vertical-align: top;">
s
</td>
<td style="vertical-align: top;">
<p>
Integer bitmask controlling data fusion and aiding methods
</p>
<p>
<strong>Comment:</strong> Set bits in the following positions to enable: 0 : Set to true to use GPS data if available 1 : Set to true to use optical flow data if available 2 : Set to true to inhibit IMU delta velocity bias estimation 3 : Set to true to enable vision position fusion 4 : Set to true to enable vision yaw fusion. Cannot be used if bit position 7 is true. 5 : Set to true to enable multi-rotor drag specific force fusion 6 : set to true if the EV observations are in a non NED reference frame and need to be rotated before being used 7 : Set to true to enable GPS yaw fusion. Cannot be used if bit position 4 is true.
</p>
<strong>Bitmask:</strong>
<ul>
<li>
<strong>0:</strong> use GPS
</li>
<li>
<strong>1:</strong> use optical flow
</li>
<li>
<strong>2:</strong> inhibit IMU bias estimation
</li>
<li>
<strong>3:</strong> vision position fusion
</li>
<li>
<strong>4:</strong> vision yaw fusion
</li>
<li>
<strong>5:</strong> multi-rotor drag fusion
</li>
<li>
<strong>6:</strong> rotate external vision
</li>
<li>
<strong>7:</strong> GPS yaw fusion
</li>
<li>
<strong>8:</strong> vision velocity fusion
</li>
</ul>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 511
</td>
<td style="vertical-align: top;">
1
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Airspeed fusion threshold. A value of zero will deactivate airspeed fusion. Any other positive value will determine the minimum airspeed which will still be fused. Set to about 90% of the vehicles stall speed. Both airspeed fusion and sideslip fusion must be active for the EKF to continue navigating after loss of GPS. Use EKF2_FUSE_BETA to activate sideslip fusion
</p>
</td>
<td style="vertical-align: top;">
0.0 > ?
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
m/s
</td>
EKF2_ASPD_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Upper limit on airspeed along individual axes used to correct baro for position error effects
</p>
</td>
<td style="vertical-align: top;">
5.0 > 50.0
</td>
<td style="vertical-align: top;">
20.0
</td>
<td style="vertical-align: top;">
m/s
</td>
<td style="vertical-align: top;">
<p>
X-axis ballistic coefficient used by the multi-rotor specific drag force model. This should be adjusted to minimise variance of the X-axis drag specific force innovation sequence
</p>
</td>
<td style="vertical-align: top;">
1.0 > 100.0
</td>
<td style="vertical-align: top;">
25.0
</td>
<td style="vertical-align: top;">
kg/m**2
</td>
EKF2_BCOEF_Y (FLOAT)
<td style="vertical-align: top;">
<p>
Y-axis ballistic coefficient used by the multi-rotor specific drag force model. This should be adjusted to minimise variance of the Y-axis drag specific force innovation sequence
</p>
</td>
<td style="vertical-align: top;">
1.0 > 100.0
</td>
<td style="vertical-align: top;">
25.0
</td>
<td style="vertical-align: top;">
kg/m**2
</td>
EKF2_BETA_GATE (FLOAT)
<td style="vertical-align: top;">
<p>
Gate size for synthetic sideslip fusion
</p>
<p>
<strong>Comment:</strong> Sets the number of standard deviations used by the innovation consistency test.
</p>
</td>
<td style="vertical-align: top;">
1.0 > ?
</td>
<td style="vertical-align: top;">
5.0
</td>
<td style="vertical-align: top;">
SD
</td>
<td style="vertical-align: top;">
<p>
Integer bitmask controlling handling of magnetic declination
</p>
<p>
<strong>Comment:</strong> Set bits in the following positions to enable functions. 0 : Set to true to use the declination from the geo_lookup library when the GPS position becomes available, set to false to always use the EKF2_MAG_DECL value. 1 : Set to true to save the EKF2_MAG_DECL parameter to the value returned by the EKF when the vehicle disarms. 2 : Set to true to always use the declination as an observation when 3-axis magnetometer fusion is being used.
</p>
<strong>Bitmask:</strong>
<ul>
<li>
<strong>0:</strong> use geo_lookup declination
</li>
<li>
<strong>1:</strong> save EKF2_MAG_DECL on disarm
</li>
<li>
<strong>2:</strong> use declination as an observation
</li>
</ul>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 7
</td>
<td style="vertical-align: top;">
7
</td>
<td style="vertical-align: top;">
</td>
EKF2_DRAG_NOISE (FLOAT)
<td style="vertical-align: top;">
<p>
Specific drag force observation noise variance used by the multi-rotor specific drag force model. Increasing it makes the multi-rotor wind estimates adjust more slowly
</p>
</td>
<td style="vertical-align: top;">
0.5 > 10.0
</td>
<td style="vertical-align: top;">
2.5
</td>
<td style="vertical-align: top;">
(m/sec**2)**2
</td>
<td style="vertical-align: top;">
<p>
Measurement noise for vision angle observations used to lower bound or replace the uncertainty included in the message
</p>
</td>
<td style="vertical-align: top;">
0.01 > ?
</td>
<td style="vertical-align: top;">
0.05
</td>
<td style="vertical-align: top;">
rad
</td>
EKF2_EVP_GATE (FLOAT)
<td style="vertical-align: top;">
<p>
Gate size for vision position fusion Sets the number of standard deviations used by the innovation consistency test
</p>
</td>
<td style="vertical-align: top;">
1.0 > ?
</td>
<td style="vertical-align: top;">
5.0
</td>
<td style="vertical-align: top;">
SD
</td>
EKF2_EVP_NOISE (FLOAT)
<td style="vertical-align: top;">
<p>
Measurement noise for vision position observations used to lower bound or replace the uncertainty included in the message
</p>
</td>
<td style="vertical-align: top;">
0.01 > ?
</td>
<td style="vertical-align: top;">
0.1
</td>
<td style="vertical-align: top;">
m
</td>
EKF2_EVV_GATE (FLOAT)
<td style="vertical-align: top;">
<p>
Gate size for vision velocity estimate fusion
</p>
<p>
<strong>Comment:</strong> Sets the number of standard deviations used by the innovation consistency test.
</p>
</td>
<td style="vertical-align: top;">
1.0 > ?
</td>
<td style="vertical-align: top;">
3.0
</td>
<td style="vertical-align: top;">
SD
</td>
EKF2_EVV_NOISE (FLOAT)
<td style="vertical-align: top;">
<p>
Measurement noise for vision velocity observations used to lower bound or replace the uncertainty included in the message
</p>
</td>
<td style="vertical-align: top;">
0.01 > ?
</td>
<td style="vertical-align: top;">
0.1
</td>
<td style="vertical-align: top;">
m/s
</td>
<td style="vertical-align: top;">
<p>
Whether to set the external vision observation noise from the parameter or from vision message
</p>
<p>
<strong>Comment:</strong> If set to true the observation noise is set from the parameters directly, if set to false the measurement noise is taken from the vision message and the parameter are used as a lower bound.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
EKF2_EV_POS_X (FLOAT)
<td style="vertical-align: top;">
<p>
X position of VI sensor focal point in body frame (forward axis with origin relative to vehicle centre of gravity)
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
m
</td>
EKF2_EV_POS_Y (FLOAT)
<td style="vertical-align: top;">
<p>
Y position of VI sensor focal point in body frame (right axis with origin relative to vehicle centre of gravity)
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
m
</td>
EKF2_EV_POS_Z (FLOAT)
<td style="vertical-align: top;">
<p>
Z position of VI sensor focal point in body frame (down axis with origin relative to vehicle centre of gravity)
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
m
</td>
EKF2_FUSE_BETA (INT32)
<td style="vertical-align: top;">
<p>
Boolean determining if synthetic sideslip measurements should fused
</p>
<p>
<strong>Comment:</strong> A value of 1 indicates that fusion is active Both sideslip fusion and airspeed fusion must be active for the EKF to continue navigating after loss of GPS. Use EKF2_ARSP_THR to activate airspeed fusion.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Baro deadzone range for height fusion
</p>
<p>
<strong>Comment:</strong> Sets the value of deadzone applied to negative baro innovations. Deadzone is enabled when EKF2_GND_EFF_DZ > 0.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 10.0
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
M
</td>
EKF2_GND_MAX_HGT (FLOAT)
<td style="vertical-align: top;">
<p>
Height above ground level for ground effect zone
</p>
<p>
<strong>Comment:</strong> Sets the maximum distance to the ground level where negative baro innovations are expected.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 5.0
</td>
<td style="vertical-align: top;">
0.5
</td>
<td style="vertical-align: top;">
M
</td>
EKF2_GPS_CHECK (INT32)
<td style="vertical-align: top;">
<p>
Integer bitmask controlling GPS checks
</p>
<p>
<strong>Comment:</strong> Set bits to 1 to enable checks. Checks enabled by the following bit positions 0 : Minimum required sat count set by EKF2_REQ_NSATS 1 : Minimum required PDOP set by EKF2_REQ_PDOP 2 : Maximum allowed horizontal position error set by EKF2_REQ_EPH 3 : Maximum allowed vertical position error set by EKF2_REQ_EPV 4 : Maximum allowed speed error set by EKF2_REQ_SACC 5 : Maximum allowed horizontal position rate set by EKF2_REQ_HDRIFT. This check will only run when the vehicle is on ground and stationary. Detecton of the stationary condition is controlled by the EKF2_MOVE_TEST parameter. 6 : Maximum allowed vertical position rate set by EKF2_REQ_VDRIFT. This check will only run when the vehicle is on ground and stationary. Detecton of the stationary condition is controlled by the EKF2_MOVE_TEST parameter. 7 : Maximum allowed horizontal speed set by EKF2_REQ_HDRIFT. This check will only run when the vehicle is on ground and stationary. Detecton of the stationary condition is controlled by the EKF2_MOVE_TEST parameter. 8 : Maximum allowed vertical velocity discrepancy set by EKF2_REQ_VDRIFT
</p>
<strong>Bitmask:</strong>
<ul>
<li>
<strong>0:</strong> Min sat count (EKF2_REQ_NSATS)
</li>
<li>
<strong>1:</strong> Min PDOP (EKF2_REQ_PDOP)
</li>
<li>
<strong>2:</strong> Max horizontal position error (EKF2_REQ_EPH)
</li>
<li>
<strong>3:</strong> Max vertical position error (EKF2_REQ_EPV)
</li>
<li>
<strong>4:</strong> Max speed error (EKF2_REQ_SACC)
</li>
<li>
<strong>5:</strong> Max horizontal position rate (EKF2_REQ_HDRIFT)
</li>
<li>
<strong>6:</strong> Max vertical position rate (EKF2_REQ_VDRIFT)
</li>
<li>
<strong>7:</strong> Max horizontal speed (EKF2_REQ_HDRIFT)
</li>
<li>
<strong>8:</strong> Max vertical velocity discrepancy (EKF2_REQ_VDRIFT)
</li>
</ul>
</td>
<td style="vertical-align: top;">
0 > 511
</td>
<td style="vertical-align: top;">
245
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Multi GPS Blending Control Mask
</p>
<p>
<strong>Comment:</strong> Set bits in the following positions to set which GPS accuracy metrics will be used to calculate the blending weight. Set to zero to disable and always used first GPS instance. 0 : Set to true to use speed accuracy 1 : Set to true to use horizontal position accuracy 2 : Set to true to use vertical position accuracy
</p>
<strong>Bitmask:</strong>
<ul>
<li>
<strong>0:</strong> use speed accuracy
</li>
<li>
<strong>1:</strong> use hpos accuracy
</li>
<li>
<strong>2:</strong> use vpos accuracy
</li>
</ul>
</td>
<td style="vertical-align: top;">
0 > 7
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
EKF2_GPS_POS_X (FLOAT)
<td style="vertical-align: top;">
<p>
X position of GPS antenna in body frame (forward axis with origin relative to vehicle centre of gravity)
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
m
</td>
EKF2_GPS_POS_Y (FLOAT)
<td style="vertical-align: top;">
<p>
Y position of GPS antenna in body frame (right axis with origin relative to vehicle centre of gravity)
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
m
</td>
EKF2_GPS_POS_Z (FLOAT)
<td style="vertical-align: top;">
<p>
Z position of GPS antenna in body frame (down axis with origin relative to vehicle centre of gravity)
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
m
</td>
EKF2_GPS_P_GATE (FLOAT)
<td style="vertical-align: top;">
<p>
Gate size for GPS horizontal position fusion
</p>
<p>
<strong>Comment:</strong> Sets the number of standard deviations used by the innovation consistency test.
</p>
</td>
<td style="vertical-align: top;">
1.0 > ?
</td>
<td style="vertical-align: top;">
5.0
</td>
<td style="vertical-align: top;">
SD
</td>
EKF2_GPS_P_NOISE (FLOAT)
<td style="vertical-align: top;">
<p>
Measurement noise for gps position
</p>
</td>
<td style="vertical-align: top;">
0.01 > 10.0
</td>
<td style="vertical-align: top;">
0.5
</td>
<td style="vertical-align: top;">
m
</td>
EKF2_GPS_TAU (FLOAT)
<td style="vertical-align: top;">
<p>
Multi GPS Blending Time Constant
</p>
<p>
<strong>Comment:</strong> Sets the longest time constant that will be applied to the calculation of GPS position and height offsets used to correct data from multiple GPS data for steady state position differences.
</p>
</td>
<td style="vertical-align: top;">
1.0 > 100.0
</td>
<td style="vertical-align: top;">
10.0
</td>
<td style="vertical-align: top;">
s
</td>
EKF2_GPS_V_GATE (FLOAT)
<td style="vertical-align: top;">
<p>
Gate size for GPS velocity fusion
</p>
<p>
<strong>Comment:</strong> Sets the number of standard deviations used by the innovation consistency test.
</p>
</td>
<td style="vertical-align: top;">
1.0 > ?
</td>
<td style="vertical-align: top;">
5.0
</td>
<td style="vertical-align: top;">
SD
</td>
<td style="vertical-align: top;">
<p>
Gate size for magnetic heading fusion
</p>
<p>
<strong>Comment:</strong> Sets the number of standard deviations used by the innovation consistency test.
</p>
</td>
<td style="vertical-align: top;">
1.0 > ?
</td>
<td style="vertical-align: top;">
2.6
</td>
<td style="vertical-align: top;">
SD
</td>
EKF2_HEAD_NOISE (FLOAT)
<td style="vertical-align: top;">
<p>
Measurement noise for magnetic heading fusion
</p>
</td>
<td style="vertical-align: top;">
0.01 > 1.0
</td>
<td style="vertical-align: top;">
0.3
</td>
<td style="vertical-align: top;">
rad
</td>
EKF2_HGT_MODE (INT32)
<td style="vertical-align: top;">
<p>
Determines the primary source of height data used by the EKF
</p>
<p>
<strong>Comment:</strong> The range sensor option should only be used when for operation over a flat surface as the local NED origin will move up and down with ground level.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Barometric pressure
</li>
<li>
<strong>1:</strong> GPS
</li>
<li>
<strong>2:</strong> Range sensor
</li>
<li>
<strong>3:</strong> Vision
</li>
</ul>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
EKF2_IMU_ID (INT32)
<td style="vertical-align: top;">
<p>
Device id of IMU
</p>
<p>
<strong>Comment:</strong> Set to 0 to use system selected (sensor_combined) IMU, otherwise set to the device id of the desired IMU (vehicle_imu).
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> System Primary
</li>
</ul>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
EKF2_IMU_POS_X (FLOAT)
<td style="vertical-align: top;">
<p>
X position of IMU in body frame (forward axis with origin relative to vehicle centre of gravity)
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
m
</td>
EKF2_IMU_POS_Y (FLOAT)
<td style="vertical-align: top;">
<p>
Y position of IMU in body frame (right axis with origin relative to vehicle centre of gravity)
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
m
</td>
EKF2_IMU_POS_Z (FLOAT)
<td style="vertical-align: top;">
<p>
Z position of IMU in body frame (down axis with origin relative to vehicle centre of gravity)
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
m
</td>
EKF2_MAGBIAS_ID (INT32)
<td style="vertical-align: top;">
<p>
ID of Magnetometer the learned bias is for
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
EKF2_MAGBIAS_X (FLOAT)
<td style="vertical-align: top;">
<p>
Learned value of magnetometer X axis bias. This is the amount of X-axis magnetometer bias learned by the EKF and saved from the last flight. It must be set to zero if the ground based magnetometer calibration is repeated
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-0.5 > 0.5
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
mGauss
</td>
EKF2_MAGBIAS_Y (FLOAT)
<td style="vertical-align: top;">
<p>
Learned value of magnetometer Y axis bias. This is the amount of Y-axis magnetometer bias learned by the EKF and saved from the last flight. It must be set to zero if the ground based magnetometer calibration is repeated
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-0.5 > 0.5
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
mGauss
</td>
EKF2_MAGBIAS_Z (FLOAT)
<td style="vertical-align: top;">
<p>
Learned value of magnetometer Z axis bias. This is the amount of Z-axis magnetometer bias learned by the EKF and saved from the last flight. It must be set to zero if the ground based magnetometer calibration is repeated
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-0.5 > 0.5
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
mGauss
</td>
EKF2_MAGB_K (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum fraction of learned mag bias saved at each disarm. Smaller values make the saved mag bias learn slower from flight to flight. Larger values make it learn faster. Must be > 0.0 and <= 1.0
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0
</td>
<td style="vertical-align: top;">
0.2
</td>
<td style="vertical-align: top;">
</td>
EKF2_MAGB_VREF (FLOAT)
<td style="vertical-align: top;">
<p>
State variance assumed for magnetometer bias storage. This is a reference variance used to calculate the fraction of learned magnetometer bias that will be used to update the stored value. Smaller values will make the stored bias data adjust more slowly from flight to flight. Larger values will make it adjust faster
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
2.5E-7
</td>
<td style="vertical-align: top;">
mGauss**2
</td>
EKF2_MAG_ACCLIM (FLOAT)
<td style="vertical-align: top;">
<p>
Horizontal acceleration threshold used by automatic selection of magnetometer fusion method. This parameter is used when the magnetometer fusion method is set automatically (EKF2_MAG_TYPE = 0). If the filtered horizontal acceleration is greater than this parameter value, then the EKF will use 3-axis magnetomer fusion
</p>
</td>
<td style="vertical-align: top;">
0.0 > 5.0
</td>
<td style="vertical-align: top;">
0.5
</td>
<td style="vertical-align: top;">
m/s**2
</td>
EKF2_MAG_B_NOISE (FLOAT)
<td style="vertical-align: top;">
<p>
Process noise for body magnetic field prediction
</p>
</td>
<td style="vertical-align: top;">
0.0 > 0.1
</td>
<td style="vertical-align: top;">
1.0e-4
</td>
<td style="vertical-align: top;">
Gauss/s
</td>
EKF2_MAG_CHECK (INT32)
<td style="vertical-align: top;">
<p>
Magnetic field strength test selection
</p>
<p>
<strong>Comment:</strong> When set, the EKF checks the strength of the magnetic field to decide whether the magnetometer data is valid. If GPS data is received, the magnetic field is compared to a World Magnetic Model (WMM), otherwise an average value is used. This check is useful to reject occasional hard iron disturbance.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Type of magnetometer fusion
</p>
<p>
<strong>Comment:</strong> Integer controlling the type of magnetometer fusion used - magnetic heading or 3-component vector. The fuson of magnetomer data as a three component vector enables vehicle body fixed hard iron errors to be learned, but requires a stable earth field. If set to 'Automatic' magnetic heading fusion is used when on-ground and 3-axis magnetic field fusion in-flight with fallback to magnetic heading fusion if there is insufficient motion to make yaw or magnetic field states observable. If set to 'Magnetic heading' magnetic heading fusion is used at all times If set to '3-axis' 3-axis field fusion is used at all times. If set to 'VTOL custom' the behaviour is the same as 'Automatic', but if fusing airspeed, magnetometer fusion is only allowed to modify the magnetic field states. This can be used by VTOL platforms with large magnetic field disturbances to prevent incorrect bias states being learned during forward flight operation which can adversely affect estimation accuracy after transition to hovering flight. If set to 'MC custom' the behaviour is the same as 'Automatic, but if there are no earth frame position or velocity observations being used, the magnetometer will not be used. This enables vehicles to operate with no GPS in environments where the magnetic field cannot be used to provide a heading reference. Prior to flight, the yaw angle is assumed to be constant if movement tests controlled by the EKF2_MOVE_TEST parameter indicate that the vehicle is static. This allows the vehicle to be placed on the ground to learn the yaw gyro bias prior to flight. If set to 'None' the magnetometer will not be used under any circumstance. Other sources of yaw may be used if selected via the EKF2_AID_MASK parameter.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Automatic
</li>
<li>
<strong>1:</strong> Magnetic heading
</li>
<li>
<strong>2:</strong> 3-axis
</li>
<li>
<strong>3:</strong> VTOL custom
</li>
<li>
<strong>4:</strong> MC custom
</li>
<li>
<strong>5:</strong> None
</li>
</ul>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
EKF2_MAG_YAWLIM (FLOAT)
<td style="vertical-align: top;">
<p>
Yaw rate threshold used by automatic selection of magnetometer fusion method. This parameter is used when the magnetometer fusion method is set automatically (EKF2_MAG_TYPE = 0). If the filtered yaw rate is greater than this parameter value, then the EKF will use 3-axis magnetomer fusion
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0
</td>
<td style="vertical-align: top;">
0.25
</td>
<td style="vertical-align: top;">
rad/s
</td>
EKF2_MIN_OBS_DT (INT32)
<td style="vertical-align: top;">
<p>
Minimum time of arrival delta between non-IMU observations before data is downsampled. Baro and Magnetometer data will be averaged before downsampling, other data will be point sampled resulting in loss of information
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
10 > 50
</td>
<td style="vertical-align: top;">
20
</td>
<td style="vertical-align: top;">
ms
</td>
EKF2_MIN_RNG (FLOAT)
<td style="vertical-align: top;">
<p>
Expected range finder reading when on ground
</p>
<p>
<strong>Comment:</strong> If the vehicle is on ground, is not moving as determined by the motion test controlled by EKF2_MOVE_TEST and the range finder is returning invalid or no data, then an assumed range value of EKF2_MIN_RNG will be used by the terrain estimator so that a terrain height estimate is avilable at the start of flight in situations where the range finder may be inside its minimum measurements distance when on ground.
</p>
</td>
<td style="vertical-align: top;">
0.01 > ?
</td>
<td style="vertical-align: top;">
0.1
</td>
<td style="vertical-align: top;">
m
</td>
EKF2_MOVE_TEST (FLOAT)
<td style="vertical-align: top;">
<p>
Vehicle movement test threshold
</p>
<p>
<strong>Comment:</strong> Scales the threshold tests applied to IMU data used to determine if the vehicle is static or moving. See parameter descriptions for EKF2_GPS_CHECK and EKF2_MAG_TYPE for further information on the functionality affected by this parameter.
</p>
</td>
<td style="vertical-align: top;">
0.1 > 10.0
</td>
<td style="vertical-align: top;">
1.0
</td>
<td style="vertical-align: top;">
</td>
EKF2_NOAID_NOISE (FLOAT)
<td style="vertical-align: top;">
<p>
Measurement noise for non-aiding position hold
</p>
</td>
<td style="vertical-align: top;">
0.5 > 50.0
</td>
<td style="vertical-align: top;">
10.0
</td>
<td style="vertical-align: top;">
m
</td>
EKF2_NOAID_TOUT (INT32)
<td style="vertical-align: top;">
<p>
Maximum lapsed time from last fusion of measurements that constrain velocity drift before the EKF will report the horizontal nav solution as invalid
</p>
</td>
<td style="vertical-align: top;">
500000 > 10000000
</td>
<td style="vertical-align: top;">
5000000
</td>
<td style="vertical-align: top;">
uSec
</td>
EKF2_OF_DELAY (FLOAT)
<td style="vertical-align: top;">
<p>
Optical flow measurement delay relative to IMU measurements Assumes measurement is timestamped at trailing edge of integration period
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 300
</td>
<td style="vertical-align: top;">
5
</td>
<td style="vertical-align: top;">
ms
</td>
EKF2_OF_GATE (FLOAT)
<td style="vertical-align: top;">
<p>
Gate size for optical flow fusion
</p>
<p>
<strong>Comment:</strong> Sets the number of standard deviations used by the innovation consistency test.
</p>
</td>
<td style="vertical-align: top;">
1.0 > ?
</td>
<td style="vertical-align: top;">
3.0
</td>
<td style="vertical-align: top;">
SD
</td>
EKF2_OF_N_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Measurement noise for the optical flow sensor
</p>
<p>
<strong>Comment:</strong> (when it's reported quality metric is at the minimum set by EKF2_OF_QMIN). The following condition must be met: EKF2_OF_N_MAXN >= EKF2_OF_N_MIN
</p>
</td>
<td style="vertical-align: top;">
0.05 > ?
</td>
<td style="vertical-align: top;">
0.5
</td>
<td style="vertical-align: top;">
rad/s
</td>
EKF2_OF_N_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
Measurement noise for the optical flow sensor when it's reported quality metric is at the maximum
</p>
</td>
<td style="vertical-align: top;">
0.05 > ?
</td>
<td style="vertical-align: top;">
0.15
</td>
<td style="vertical-align: top;">
rad/s
</td>
EKF2_OF_POS_X (FLOAT)
<td style="vertical-align: top;">
<p>
X position of optical flow focal point in body frame (forward axis with origin relative to vehicle centre of gravity)
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
m
</td>
EKF2_OF_POS_Y (FLOAT)
<td style="vertical-align: top;">
<p>
Y position of optical flow focal point in body frame (right axis with origin relative to vehicle centre of gravity)
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
m
</td>
EKF2_OF_POS_Z (FLOAT)
<td style="vertical-align: top;">
<p>
Z position of optical flow focal point in body frame (down axis with origin relative to vehicle centre of gravity)
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
m
</td>
EKF2_OF_QMIN (INT32)
<td style="vertical-align: top;">
<p>
Optical Flow data will only be used if the sensor reports a quality metric >= EKF2_OF_QMIN
</p>
</td>
<td style="vertical-align: top;">
0 > 255
</td>
<td style="vertical-align: top;">
1
</td>
<td style="vertical-align: top;">
</td>
EKF2_PCOEF_XN (FLOAT)
<td style="vertical-align: top;">
<p>
Static pressure position error coefficient for the negative X axis. This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the X body axis. If the baro height estimate rises during backwards flight, then this will be a negative number
</p>
</td>
<td style="vertical-align: top;">
-0.5 > 0.5
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
EKF2_PCOEF_XP (FLOAT)
<td style="vertical-align: top;">
<p>
Static pressure position error coefficient for the positive X axis This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the X body axis. If the baro height estimate rises during forward flight, then this will be a negative number
</p>
</td>
<td style="vertical-align: top;">
-0.5 > 0.5
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
EKF2_PCOEF_YN (FLOAT)
<td style="vertical-align: top;">
<p>
Pressure position error coefficient for the negative Y axis. This is the ratio of static pressure error to dynamic pressure generated by a wind relative velocity along the negative Y (LH) body axis. If the baro height estimate rises during sideways flight to the left, then this will be a negative number
</p>
</td>
<td style="vertical-align: top;">
-0.5 > 0.5
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
EKF2_PCOEF_YP (FLOAT)
<td style="vertical-align: top;">
<p>
Pressure position error coefficient for the positive Y axis. This is the ratio of static pressure error to dynamic pressure generated by a wind relative velocity along the positive Y (RH) body axis. If the baro height estimate rises during sideways flight to the right, then this will be a negative number
</p>
</td>
<td style="vertical-align: top;">
-0.5 > 0.5
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
EKF2_PCOEF_Z (FLOAT)
<td style="vertical-align: top;">
<p>
Static pressure position error coefficient for the Z axis. This is the ratio of static pressure error to dynamic pressure generated by a wind relative velocity along the Z body axis
</p>
</td>
<td style="vertical-align: top;">
-0.5 > 0.5
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
EKF2_REQ_EPH (FLOAT)
<td style="vertical-align: top;">
<p>
Required EPH to use GPS
</p>
</td>
<td style="vertical-align: top;">
2 > 100
</td>
<td style="vertical-align: top;">
3.0
</td>
<td style="vertical-align: top;">
m
</td>
EKF2_REQ_EPV (FLOAT)
<td style="vertical-align: top;">
<p>
Required EPV to use GPS
</p>
</td>
<td style="vertical-align: top;">
2 > 100
</td>
<td style="vertical-align: top;">
5.0
</td>
<td style="vertical-align: top;">
m
</td>
EKF2_REQ_GPS_H (FLOAT)
<td style="vertical-align: top;">
<p>
Required GPS health time on startup
</p>
<p>
<strong>Comment:</strong> Minimum continuous period without GPS failure required to mark a healthy GPS status. It can be reduced to speed up initialization, but it's recommended to keep this unchanged for a vehicle.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0.1 > ?
</td>
<td style="vertical-align: top;">
10.0
</td>
<td style="vertical-align: top;">
s
</td>
EKF2_REQ_HDRIFT (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum horizontal drift speed to use GPS
</p>
</td>
<td style="vertical-align: top;">
0.1 > 1.0
</td>
<td style="vertical-align: top;">
0.1
</td>
<td style="vertical-align: top;">
m/s
</td>
<td style="vertical-align: top;">
<p>
Required speed accuracy to use GPS
</p>
</td>
<td style="vertical-align: top;">
0.5 > 5.0
</td>
<td style="vertical-align: top;">
0.5
</td>
<td style="vertical-align: top;">
m/s
</td>
EKF2_REQ_VDRIFT (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum vertical drift speed to use GPS
</p>
</td>
<td style="vertical-align: top;">
0.1 > 1.5
</td>
<td style="vertical-align: top;">
0.2
</td>
<td style="vertical-align: top;">
m/s
</td>
EKF2_RNG_AID (INT32)
<td style="vertical-align: top;">
<p>
Range sensor aid
</p>
<p>
<strong>Comment:</strong> If this parameter is enabled then the estimator will make use of the range finder measurements to estimate it's height even if range sensor is not the primary height source. It will only do so if conditions for range measurement fusion are met. This enables the range finder to be used during low speed and low altitude operation, eg takeoff and landing, where baro interference from rotor wash is excessive and can corrupt EKF state estimates. It is intended to be used where a vertical takeoff and landing is performed, and horizontal flight does not occur until above EKF2_RNG_A_HMAX. If vehicle motion causes repeated switching between the primary height sensor and range finder, an offset in the local position origin can accumulate. Also range finder measurements are less reliable and can experience unexpected errors. For these reasons, if accurate control of height relative to ground is required, it is recommended to use the MPC_ALT_MODE parameter instead, unless baro errors are severe enough to cause problems with landing and takeoff.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Range aid disabled
</li>
<li>
<strong>1:</strong> Range aid enabled
</li>
</ul>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
EKF2_RNG_A_HMAX (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum absolute altitude (height above ground level) allowed for range aid mode
</p>
<p>
<strong>Comment:</strong> If the vehicle absolute altitude exceeds this value then the estimator will not fuse range measurements to estimate it's height. This only applies when range aid mode is activated (EKF2_RNG_AID = enabled).
</p>
</td>
<td style="vertical-align: top;">
1.0 > 10.0
</td>
<td style="vertical-align: top;">
5.0
</td>
<td style="vertical-align: top;">
m
</td>
EKF2_RNG_A_IGATE (FLOAT)
<td style="vertical-align: top;">
<p>
Gate size used for innovation consistency checks for range aid fusion
</p>
<p>
<strong>Comment:</strong> A lower value means HAGL needs to be more stable in order to use range finder for height estimation in range aid mode
</p>
</td>
<td style="vertical-align: top;">
0.1 > 5.0
</td>
<td style="vertical-align: top;">
1.0
</td>
<td style="vertical-align: top;">
SD
</td>
EKF2_RNG_A_VMAX (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum horizontal velocity allowed for range aid mode
</p>
<p>
<strong>Comment:</strong> If the vehicle horizontal speed exceeds this value then the estimator will not fuse range measurements to estimate it's height. This only applies when range aid mode is activated (EKF2_RNG_AID = enabled).
</p>
</td>
<td style="vertical-align: top;">
0.1 > 2
</td>
<td style="vertical-align: top;">
1.0
</td>
<td style="vertical-align: top;">
m/s
</td>
EKF2_RNG_DELAY (FLOAT)
<td style="vertical-align: top;">
<p>
Range finder measurement delay relative to IMU measurements
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 300
</td>
<td style="vertical-align: top;">
5
</td>
<td style="vertical-align: top;">
ms
</td>
EKF2_RNG_GATE (FLOAT)
<td style="vertical-align: top;">
<p>
Gate size for range finder fusion
</p>
<p>
<strong>Comment:</strong> Sets the number of standard deviations used by the innovation consistency test.
</p>
</td>
<td style="vertical-align: top;">
1.0 > ?
</td>
<td style="vertical-align: top;">
5.0
</td>
<td style="vertical-align: top;">
SD
</td>
EKF2_RNG_NOISE (FLOAT)
<td style="vertical-align: top;">
<p>
Measurement noise for range finder fusion
</p>
</td>
<td style="vertical-align: top;">
0.01 > ?
</td>
<td style="vertical-align: top;">
0.1
</td>
<td style="vertical-align: top;">
m
</td>
<td style="vertical-align: top;">
<p>
X position of range finder origin in body frame (forward axis with origin relative to vehicle centre of gravity)
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
m
</td>
EKF2_RNG_POS_Y (FLOAT)
<td style="vertical-align: top;">
<p>
Y position of range finder origin in body frame (right axis with origin relative to vehicle centre of gravity)
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
m
</td>
EKF2_RNG_POS_Z (FLOAT)
<td style="vertical-align: top;">
<p>
Z position of range finder origin in body frame (down axis with origin relative to vehicle centre of gravity)
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
m
</td>
EKF2_RNG_SFE (FLOAT)
<td style="vertical-align: top;">
<p>
Range finder range dependant noise scaler
</p>
<p>
<strong>Comment:</strong> Specifies the increase in range finder noise with range.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 0.2
</td>
<td style="vertical-align: top;">
0.05
</td>
<td style="vertical-align: top;">
m/m
</td>
EKF2_TAS_GATE (FLOAT)
<td style="vertical-align: top;">
<p>
Gate size for TAS fusion
</p>
<p>
<strong>Comment:</strong> Sets the number of standard deviations used by the innovation consistency test.
</p>
</td>
<td style="vertical-align: top;">
1.0 > ?
</td>
<td style="vertical-align: top;">
3.0
</td>
<td style="vertical-align: top;">
SD
</td>
EKF2_TAU_POS (FLOAT)
<td style="vertical-align: top;">
<p>
Time constant of the position output prediction and smoothing filter. Controls how tightly the output track the EKF states
</p>
</td>
<td style="vertical-align: top;">
0.1 > 1.0
</td>
<td style="vertical-align: top;">
0.25
</td>
<td style="vertical-align: top;">
s
</td>
EKF2_TAU_VEL (FLOAT)
<td style="vertical-align: top;">
<p>
Time constant of the velocity output prediction and smoothing filter
</p>
</td>
<td style="vertical-align: top;">
? > 1.0
</td>
<td style="vertical-align: top;">
0.25
</td>
<td style="vertical-align: top;">
s
</td>
<td style="vertical-align: top;">
<p>
RC Loss Alarm
</p>
<p>
<strong>Comment:</strong> Enable/disable event task for RC Loss. When enabled, an alarm tune will be played via buzzer or ESCs, if supported. The alarm will sound after a disarm, if the vehicle was previously armed and only if the vehicle had RC signal at some point. Particularly useful for locating crashed drones without a GPS sensor.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
EV_TSK_STAT_DIS (INT32)
<td style="vertical-align: top;">
<p>
Status Display
</p>
<p>
<strong>Comment:</strong> Enable/disable event task for displaying the vehicle status using arm-mounted LEDs. When enabled and if the vehicle supports it, LEDs will flash indicating various vehicle status changes. Currently PX4 has not implemented any specific status events. -
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Acro body x max rate
</p>
<p>
<strong>Comment:</strong> This is the rate the controller is trying to achieve if the user applies full roll stick input in acro mode.
</p>
</td>
<td style="vertical-align: top;">
45 > 720
</td>
<td style="vertical-align: top;">
90
</td>
<td style="vertical-align: top;">
degrees
</td>
FW_ACRO_Y_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Acro body y max rate
</p>
<p>
<strong>Comment:</strong> This is the body y rate the controller is trying to achieve if the user applies full pitch stick input in acro mode.
</p>
</td>
<td style="vertical-align: top;">
45 > 720
</td>
<td style="vertical-align: top;">
90
</td>
<td style="vertical-align: top;">
degrees
</td>
FW_ACRO_Z_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Acro body z max rate
</p>
<p>
<strong>Comment:</strong> This is the body z rate the controller is trying to achieve if the user applies full yaw stick input in acro mode.
</p>
</td>
<td style="vertical-align: top;">
10 > 180
</td>
<td style="vertical-align: top;">
45
</td>
<td style="vertical-align: top;">
degrees
</td>
FW_ARSP_MODE (INT32)
<td style="vertical-align: top;">
<p>
Airspeed mode
</p>
<p>
<strong>Comment:</strong> For small wings or VTOL without airspeed sensor this parameter can be used to enable flying without an airspeed reading
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Normal (use airspeed if available)
</li>
<li>
<strong>1:</strong> Airspeed disabled
</li>
</ul>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
FW_BAT_SCALE_EN (INT32)
<td style="vertical-align: top;">
<p>
Whether to scale throttle by battery power level
</p>
<p>
<strong>Comment:</strong> This compensates for voltage drop of the battery over time by attempting to normalize performance across the operating range of the battery. The fixed wing should constantly behave as if it was fully charged with reduced max thrust at lower battery percentages. i.e. if cruise speed is at 0.5 throttle at 100% battery, it will still be 0.5 at 60% battery.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
FW_DTRIM_P_FLPS (FLOAT)
<td style="vertical-align: top;">
<p>
Pitch trim increment for flaps configuration
</p>
<p>
<strong>Comment:</strong> This increment is added to the pitch trim whenever flaps are fully deployed.
</p>
</td>
<td style="vertical-align: top;">
-0.25 > 0.25 (0.01)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
FW_DTRIM_P_VMAX (FLOAT)
<td style="vertical-align: top;">
<p>
Pitch trim increment at maximum airspeed
</p>
<p>
<strong>Comment:</strong> This increment is added to TRIM_PITCH when airspeed is FW_AIRSPD_MAX.
</p>
</td>
<td style="vertical-align: top;">
-0.25 > 0.25 (0.01)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
FW_DTRIM_P_VMIN (FLOAT)
<td style="vertical-align: top;">
<p>
Pitch trim increment at minimum airspeed
</p>
<p>
<strong>Comment:</strong> This increment is added to TRIM_PITCH when airspeed is FW_AIRSPD_MIN.
</p>
</td>
<td style="vertical-align: top;">
-0.25 > 0.25 (0.01)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
FW_DTRIM_R_FLPS (FLOAT)
<td style="vertical-align: top;">
<p>
Roll trim increment for flaps configuration
</p>
<p>
<strong>Comment:</strong> This increment is added to TRIM_ROLL whenever flaps are fully deployed.
</p>
</td>
<td style="vertical-align: top;">
-0.25 > 0.25 (0.01)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
FW_DTRIM_R_VMAX (FLOAT)
<td style="vertical-align: top;">
<p>
Roll trim increment at maximum airspeed
</p>
<p>
<strong>Comment:</strong> This increment is added to TRIM_ROLL when airspeed is FW_AIRSPD_MAX.
</p>
</td>
<td style="vertical-align: top;">
-0.25 > 0.25 (0.01)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
FW_DTRIM_R_VMIN (FLOAT)
<td style="vertical-align: top;">
<p>
Roll trim increment at minimum airspeed
</p>
<p>
<strong>Comment:</strong> This increment is added to TRIM_ROLL when airspeed is FW_AIRSPD_MIN.
</p>
</td>
<td style="vertical-align: top;">
-0.25 > 0.25 (0.01)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
FW_DTRIM_Y_VMAX (FLOAT)
<td style="vertical-align: top;">
<p>
Yaw trim increment at maximum airspeed
</p>
<p>
<strong>Comment:</strong> This increment is added to TRIM_YAW when airspeed is FW_AIRSPD_MAX.
</p>
</td>
<td style="vertical-align: top;">
-0.25 > 0.25 (0.01)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
FW_DTRIM_Y_VMIN (FLOAT)
<td style="vertical-align: top;">
<p>
Yaw trim increment at minimum airspeed
</p>
<p>
<strong>Comment:</strong> This increment is added to TRIM_YAW when airspeed is FW_AIRSPD_MIN.
</p>
</td>
<td style="vertical-align: top;">
-0.25 > 0.25 (0.01)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Flaps setting during take-off
</p>
<p>
<strong>Comment:</strong> Sets a fraction of full flaps (FW_FLAPS_SCL) during take-off
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0 (0.01)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
norm
</td>
FW_MAN_P_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Max manual pitch
</p>
<p>
<strong>Comment:</strong> Max pitch for manual control in attitude stabilized mode
</p>
</td>
<td style="vertical-align: top;">
0.0 > 90.0 (0.5)
</td>
<td style="vertical-align: top;">
45.0
</td>
<td style="vertical-align: top;">
deg
</td>
FW_MAN_P_SC (FLOAT)
<td style="vertical-align: top;">
<p>
Manual pitch scale
</p>
<p>
<strong>Comment:</strong> Scale factor applied to the desired pitch actuator command in full manual mode. This parameter allows to adjust the throws of the control surfaces.
</p>
</td>
<td style="vertical-align: top;">
0.0 > ? (0.01)
</td>
<td style="vertical-align: top;">
1.0
</td>
<td style="vertical-align: top;">
norm
</td>
FW_MAN_R_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Max manual roll
</p>
<p>
<strong>Comment:</strong> Max roll for manual control in attitude stabilized mode
</p>
</td>
<td style="vertical-align: top;">
0.0 > 90.0 (0.5)
</td>
<td style="vertical-align: top;">
45.0
</td>
<td style="vertical-align: top;">
deg
</td>
FW_MAN_R_SC (FLOAT)
<td style="vertical-align: top;">
<p>
Manual roll scale
</p>
<p>
<strong>Comment:</strong> Scale factor applied to the desired roll actuator command in full manual mode. This parameter allows to adjust the throws of the control surfaces.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0 (0.01)
</td>
<td style="vertical-align: top;">
1.0
</td>
<td style="vertical-align: top;">
norm
</td>
FW_MAN_Y_SC (FLOAT)
<td style="vertical-align: top;">
<p>
Manual yaw scale
</p>
<p>
<strong>Comment:</strong> Scale factor applied to the desired yaw actuator command in full manual mode. This parameter allows to adjust the throws of the control surfaces.
</p>
</td>
<td style="vertical-align: top;">
0.0 > ? (0.01)
</td>
<td style="vertical-align: top;">
1.0
</td>
<td style="vertical-align: top;">
norm
</td>
<td style="vertical-align: top;">
<p>
Pitch rate integrator gain
</p>
<p>
<strong>Comment:</strong> This gain defines how much control response will result out of a steady state error. It trims any constant error.
</p>
</td>
<td style="vertical-align: top;">
0.005 > 0.5 (0.005)
</td>
<td style="vertical-align: top;">
0.1
</td>
<td style="vertical-align: top;">
%/rad
</td>
FW_PR_IMAX (FLOAT)
<td style="vertical-align: top;">
<p>
Pitch rate integrator limit
</p>
<p>
<strong>Comment:</strong> The portion of the integrator part in the control surface deflection is limited to this value
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0 (0.05)
</td>
<td style="vertical-align: top;">
0.4
</td>
<td style="vertical-align: top;">
</td>
FW_PR_P (FLOAT)
<td style="vertical-align: top;">
<p>
Pitch rate proportional gain
</p>
<p>
<strong>Comment:</strong> This defines how much the elevator input will be commanded depending on the current body angular rate error.
</p>
</td>
<td style="vertical-align: top;">
0.005 > 1.0 (0.005)
</td>
<td style="vertical-align: top;">
0.08
</td>
<td style="vertical-align: top;">
%/rad/s
</td>
FW_PSP_OFF (FLOAT)
<td style="vertical-align: top;">
<p>
Pitch setpoint offset
</p>
<p>
<strong>Comment:</strong> An airframe specific offset of the pitch setpoint in degrees, the value is added to the pitch setpoint and should correspond to the typical cruise speed of the airframe.
</p>
</td>
<td style="vertical-align: top;">
-90.0 > 90.0 (0.5)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
deg
</td>
FW_P_RMAX_NEG (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum negative / down pitch rate
</p>
<p>
<strong>Comment:</strong> This limits the maximum pitch down up angular rate the controller will output (in degrees per second).
</p>
</td>
<td style="vertical-align: top;">
0.0 > 90.0 (0.5)
</td>
<td style="vertical-align: top;">
60.0
</td>
<td style="vertical-align: top;">
deg/s
</td>
FW_P_RMAX_POS (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum positive / up pitch rate
</p>
<p>
<strong>Comment:</strong> This limits the maximum pitch up angular rate the controller will output (in degrees per second).
</p>
</td>
<td style="vertical-align: top;">
0.0 > 90.0 (0.5)
</td>
<td style="vertical-align: top;">
60.0
</td>
<td style="vertical-align: top;">
deg/s
</td>
FW_P_TC (FLOAT)
<td style="vertical-align: top;">
<p>
Attitude pitch time constant
</p>
<p>
<strong>Comment:</strong> This defines the latency between a pitch step input and the achieved setpoint (inverse to a P gain). Half a second is a good start value and fits for most average systems. Smaller systems may require smaller values, but as this will wear out servos faster, the value should only be decreased as needed.
</p>
</td>
<td style="vertical-align: top;">
0.2 > 1.0 (0.05)
</td>
<td style="vertical-align: top;">
0.4
</td>
<td style="vertical-align: top;">
s
</td>
FW_RATT_TH (FLOAT)
<td style="vertical-align: top;">
<p>
Threshold for Rattitude mode
</p>
<p>
<strong>Comment:</strong> Manual input needed in order to override attitude control rate setpoints and instead pass manual stick inputs as rate setpoints
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0 (0.01)
</td>
<td style="vertical-align: top;">
0.8
</td>
<td style="vertical-align: top;">
</td>
FW_RLL_TO_YAW_FF (FLOAT)
<td style="vertical-align: top;">
<p>
Roll control to yaw control feedforward gain
</p>
<p>
<strong>Comment:</strong> This gain can be used to counteract the "adverse yaw" effect for fixed wings. When the plane enters a roll it will tend to yaw the nose out of the turn. This gain enables the use of a yaw actuator (rudder, airbrakes, ...) to counteract this effect.
</p>
</td>
<td style="vertical-align: top;">
0.0 > ? (0.01)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
FW_RR_FF (FLOAT)
<td style="vertical-align: top;">
<p>
Roll rate feed forward
</p>
<p>
<strong>Comment:</strong> Direct feed forward from rate setpoint to control surface output. Use this to obtain a tigher response of the controller without introducing noise amplification.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 10.0 (0.05)
</td>
<td style="vertical-align: top;">
0.5
</td>
<td style="vertical-align: top;">
%/rad/s
</td>
FW_RR_I (FLOAT)
<td style="vertical-align: top;">
<p>
Roll rate integrator Gain
</p>
<p>
<strong>Comment:</strong> This gain defines how much control response will result out of a steady state error. It trims any constant error.
</p>
</td>
<td style="vertical-align: top;">
0.005 > 0.2 (0.005)
</td>
<td style="vertical-align: top;">
0.1
</td>
<td style="vertical-align: top;">
%/rad
</td>
FW_RR_IMAX (FLOAT)
<td style="vertical-align: top;">
<p>
Roll integrator anti-windup
</p>
<p>
<strong>Comment:</strong> The portion of the integrator part in the control surface deflection is limited to this value.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0 (0.05)
</td>
<td style="vertical-align: top;">
0.2
</td>
<td style="vertical-align: top;">
</td>
FW_RR_P (FLOAT)
<td style="vertical-align: top;">
<p>
Roll rate proportional Gain
</p>
<p>
<strong>Comment:</strong> This defines how much the aileron input will be commanded depending on the current body angular rate error.
</p>
</td>
<td style="vertical-align: top;">
0.005 > 1.0 (0.005)
</td>
<td style="vertical-align: top;">
0.05
</td>
<td style="vertical-align: top;">
%/rad/s
</td>
FW_RSP_OFF (FLOAT)
<td style="vertical-align: top;">
<p>
Roll setpoint offset
</p>
<p>
<strong>Comment:</strong> An airframe specific offset of the roll setpoint in degrees, the value is added to the roll setpoint and should correspond to the typical cruise speed of the airframe.
</p>
</td>
<td style="vertical-align: top;">
-90.0 > 90.0 (0.5)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
deg
</td>
FW_R_RMAX (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum roll rate
</p>
<p>
<strong>Comment:</strong> This limits the maximum roll rate the controller will output (in degrees per second).
</p>
</td>
<td style="vertical-align: top;">
0.0 > 90.0 (0.5)
</td>
<td style="vertical-align: top;">
70.0
</td>
<td style="vertical-align: top;">
deg/s
</td>
FW_R_TC (FLOAT)
<td style="vertical-align: top;">
<p>
Attitude Roll Time Constant
</p>
<p>
<strong>Comment:</strong> This defines the latency between a roll step input and the achieved setpoint (inverse to a P gain). Half a second is a good start value and fits for most average systems. Smaller systems may require smaller values, but as this will wear out servos faster, the value should only be decreased as needed.
</p>
</td>
<td style="vertical-align: top;">
0.4 > 1.0 (0.05)
</td>
<td style="vertical-align: top;">
0.4
</td>
<td style="vertical-align: top;">
s
</td>
<td style="vertical-align: top;">
<p>
Wheel steering rate integrator gain
</p>
<p>
<strong>Comment:</strong> This gain defines how much control response will result out of a steady state error. It trims any constant error.
</p>
</td>
<td style="vertical-align: top;">
0.005 > 0.5 (0.005)
</td>
<td style="vertical-align: top;">
0.1
</td>
<td style="vertical-align: top;">
%/rad
</td>
FW_WR_IMAX (FLOAT)
<td style="vertical-align: top;">
<p>
Wheel steering rate integrator limit
</p>
<p>
<strong>Comment:</strong> The portion of the integrator part in the control surface deflection is limited to this value
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0 (0.05)
</td>
<td style="vertical-align: top;">
1.0
</td>
<td style="vertical-align: top;">
</td>
FW_WR_P (FLOAT)
<td style="vertical-align: top;">
<p>
Wheel steering rate proportional gain
</p>
<p>
<strong>Comment:</strong> This defines how much the wheel steering input will be commanded depending on the current body angular rate error.
</p>
</td>
<td style="vertical-align: top;">
0.005 > 1.0 (0.005)
</td>
<td style="vertical-align: top;">
0.5
</td>
<td style="vertical-align: top;">
%/rad/s
</td>
<td style="vertical-align: top;">
<p>
Yaw rate integrator gain
</p>
<p>
<strong>Comment:</strong> This gain defines how much control response will result out of a steady state error. It trims any constant error.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 50.0 (0.5)
</td>
<td style="vertical-align: top;">
0.1
</td>
<td style="vertical-align: top;">
%/rad
</td>
FW_YR_IMAX (FLOAT)
<td style="vertical-align: top;">
<p>
Yaw rate integrator limit
</p>
<p>
<strong>Comment:</strong> The portion of the integrator part in the control surface deflection is limited to this value
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0 (0.05)
</td>
<td style="vertical-align: top;">
0.2
</td>
<td style="vertical-align: top;">
</td>
FW_YR_P (FLOAT)
<td style="vertical-align: top;">
<p>
Yaw rate proportional gain
</p>
<p>
<strong>Comment:</strong> This defines how much the rudder input will be commanded depending on the current body angular rate error.
</p>
</td>
<td style="vertical-align: top;">
0.005 > 1.0 (0.005)
</td>
<td style="vertical-align: top;">
0.05
</td>
<td style="vertical-align: top;">
%/rad/s
</td>
FW_Y_RMAX (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum yaw rate
</p>
<p>
<strong>Comment:</strong> This limits the maximum yaw rate the controller will output (in degrees per second).
</p>
</td>
<td style="vertical-align: top;">
0.0 > 90.0 (0.5)
</td>
<td style="vertical-align: top;">
50.0
</td>
<td style="vertical-align: top;">
deg/s
</td>
<td style="vertical-align: top;">
<p>
Climbout Altitude difference
</p>
<p>
<strong>Comment:</strong> If the altitude error exceeds this parameter, the system will climb out with maximum throttle and minimum airspeed until it is closer than this distance to the desired altitude. Mostly used for takeoff waypoints / modes. Set to 0 to disable climbout mode (not recommended).
</p>
</td>
<td style="vertical-align: top;">
0.0 > 150.0 (0.5)
</td>
<td style="vertical-align: top;">
10.0
</td>
<td style="vertical-align: top;">
m
</td>
<td style="vertical-align: top;">
<p>
L1 period
</p>
<p>
<strong>Comment:</strong> This is the L1 distance and defines the tracking point ahead of the aircraft its following. A value of 18-25 meters works for most aircraft. Shorten slowly during tuning until response is sharp without oscillation.
</p>
</td>
<td style="vertical-align: top;">
12.0 > 50.0 (0.5)
</td>
<td style="vertical-align: top;">
20.0
</td>
<td style="vertical-align: top;">
m
</td>
FW_L1_R_SLEW_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
L1 controller roll slew rate limit
</p>
<p>
<strong>Comment:</strong> The maxium change in roll angle setpoint per second.
</p>
</td>
<td style="vertical-align: top;">
0 > ? (1)
</td>
<td style="vertical-align: top;">
90.0
</td>
<td style="vertical-align: top;">
deg/s
</td>
FW_LND_AIRSPD_SC (FLOAT)
<td style="vertical-align: top;">
<p>
Min. airspeed scaling factor for landing
</p>
<p>
<strong>Comment:</strong> Multiplying this factor with the minimum airspeed of the plane gives the target airspeed the landing approach. FW_AIRSPD_MIN * FW_LND_AIRSPD_SC
</p>
</td>
<td style="vertical-align: top;">
1.0 > 1.5 (0.01)
</td>
<td style="vertical-align: top;">
1.3
</td>
<td style="vertical-align: top;">
norm
</td>
<td style="vertical-align: top;">
<p>
Early landing configuration deployment
</p>
<p>
<strong>Comment:</strong> When disabled, the landing configuration (flaps, landing airspeed, etc.) is only activated on the final approach to landing. When enabled, it is already activated when entering the final loiter-down (loiter-to-alt) waypoint before the landing approach. This shifts the (often large) altitude and airspeed errors caused by the configuration change away from the ground such that these are not so critical. It also gives the controller enough time to adapt to the new configuration such that the landing approach starts with a cleaner initial state.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Flare, maximum pitch
</p>
<p>
<strong>Comment:</strong> Maximum pitch during flare, a positive sign means nose up Applied once FW_LND_FLALT is reached
</p>
</td>
<td style="vertical-align: top;">
0 > 45.0 (0.5)
</td>
<td style="vertical-align: top;">
15.0
</td>
<td style="vertical-align: top;">
deg
</td>
FW_LND_FL_PMIN (FLOAT)
<td style="vertical-align: top;">
<p>
Flare, minimum pitch
</p>
<p>
<strong>Comment:</strong> Minimum pitch during flare, a positive sign means nose up Applied once FW_LND_FLALT is reached
</p>
</td>
<td style="vertical-align: top;">
0 > 15.0 (0.5)
</td>
<td style="vertical-align: top;">
2.5
</td>
<td style="vertical-align: top;">
deg
</td>
FW_LND_HHDIST (FLOAT)
<td style="vertical-align: top;">
<p>
Landing heading hold horizontal distance. Set to 0 to disable heading hold
</p>
</td>
<td style="vertical-align: top;">
0 > 30.0 (0.5)
</td>
<td style="vertical-align: top;">
15.0
</td>
<td style="vertical-align: top;">
m
</td>
<td style="vertical-align: top;">
<p>
Throttle time constant factor for landing
</p>
<p>
<strong>Comment:</strong> Set this parameter to less than 1.0 to make the TECS throttle loop react faster during landing than during normal flight (i.e. giving efficiency and low motor wear at high altitudes but control accuracy during landing). During landing, the TECS throttle time constant (FW_T_THRO_CONST) is multiplied by this value.
</p>
</td>
<td style="vertical-align: top;">
0.2 > 1.0 (0.1)
</td>
<td style="vertical-align: top;">
1.0
</td>
<td style="vertical-align: top;">
</td>
FW_LND_TLALT (FLOAT)
<td style="vertical-align: top;">
<p>
Landing throttle limit altitude (relative landing altitude)
</p>
<p>
<strong>Comment:</strong> Default of -1.0 lets the system default to applying throttle limiting at 2/3 of the flare altitude.
</p>
</td>
<td style="vertical-align: top;">
-1.0 > 30.0 (0.5)
</td>
<td style="vertical-align: top;">
-1.0
</td>
<td style="vertical-align: top;">
m
</td>
FW_LND_USETER (INT32)
<td style="vertical-align: top;">
<p>
Use terrain estimate during landing
</p>
<p>
<strong>Comment:</strong> This is turned off by default and a waypoint or return altitude is normally used (or sea level for an arbitrary land position).
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
FW_P_LIM_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Positive pitch limit
</p>
<p>
<strong>Comment:</strong> The maximum positive pitch the controller will output.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 60.0 (0.5)
</td>
<td style="vertical-align: top;">
45.0
</td>
<td style="vertical-align: top;">
deg
</td>
<td style="vertical-align: top;">
<p>
Controller roll limit
</p>
<p>
<strong>Comment:</strong> The maximum roll the controller will output.
</p>
</td>
<td style="vertical-align: top;">
35.0 > 65.0 (0.5)
</td>
<td style="vertical-align: top;">
50.0
</td>
<td style="vertical-align: top;">
deg
</td>
FW_THR_ALT_SCL (FLOAT)
<td style="vertical-align: top;">
<p>
Scale throttle by pressure change
</p>
<p>
<strong>Comment:</strong> Automatically adjust throttle to account for decreased air density at higher altitudes. Start with a scale factor of 1.0 and adjust for different propulsion systems. When flying without airspeed sensor this will help to keep a constant performance over large altitude ranges. The default value of 0 will disable scaling.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 10.0 (0.1)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
FW_THR_CRUISE (FLOAT)
<td style="vertical-align: top;">
<p>
Cruise throttle
</p>
<p>
<strong>Comment:</strong> This is the throttle setting required to achieve the desired cruise speed. Most airframes have a value of 0.5-0.7.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0 (0.01)
</td>
<td style="vertical-align: top;">
0.6
</td>
<td style="vertical-align: top;">
norm
</td>
FW_THR_IDLE (FLOAT)
<td style="vertical-align: top;">
<p>
Idle throttle
</p>
<p>
<strong>Comment:</strong> This is the minimum throttle while on the ground For aircraft with internal combustion engine this parameter should be set above desired idle rpm.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 0.4 (0.01)
</td>
<td style="vertical-align: top;">
0.15
</td>
<td style="vertical-align: top;">
norm
</td>
FW_THR_LND_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Throttle limit during landing below throttle limit altitude
</p>
<p>
<strong>Comment:</strong> During the flare of the autonomous landing process, this value will be set as throttle limit when the aircraft altitude is below FW_LND_TLALT.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0 (0.01)
</td>
<td style="vertical-align: top;">
1.0
</td>
<td style="vertical-align: top;">
norm
</td>
FW_THR_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Throttle limit max
</p>
<p>
<strong>Comment:</strong> This is the maximum throttle % that can be used by the controller. For overpowered aircraft, this should be reduced to a value that provides sufficient thrust to climb at the maximum pitch angle PTCH_MAX.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0 (0.01)
</td>
<td style="vertical-align: top;">
1.0
</td>
<td style="vertical-align: top;">
norm
</td>
FW_THR_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
Throttle limit min
</p>
<p>
<strong>Comment:</strong> This is the minimum throttle % that can be used by the controller. For electric aircraft this will normally be set to zero, but can be set to a small non-zero value if a folding prop is fitted to prevent the prop from folding and unfolding repeatedly in-flight or to provide some aerodynamic drag from a turning prop to improve the descent rate. For aircraft with internal combustion engine this parameter should be set for desired idle rpm.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0 (0.01)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
norm
</td>
FW_THR_SLEW_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Throttle max slew rate
</p>
<p>
<strong>Comment:</strong> Maximum slew rate for the commanded throttle
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Motor delay
</p>
<p>
<strong>Comment:</strong> Delay between starting attitude control and powering up the throttle (giving throttle control to the controller) Before this timespan is up the throttle will be set to FW_THR_IDLE, set to 0 to deactivate
</p>
</td>
<td style="vertical-align: top;">
0.0 > 10.0 (0.5)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
s
</td>
LAUN_CAT_PMAX (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum pitch before the throttle is powered up (during motor delay phase)
</p>
<p>
<strong>Comment:</strong> This is an extra limit for the maximum pitch which is imposed in the phase before the throttle turns on. This allows to limit the maximum pitch angle during a bungee launch (make the launch less steep).
</p>
</td>
<td style="vertical-align: top;">
0.0 > 45.0 (0.5)
</td>
<td style="vertical-align: top;">
30.0
</td>
<td style="vertical-align: top;">
deg
</td>
LAUN_CAT_T (FLOAT)
<td style="vertical-align: top;">
<p>
Catapult time threshold
</p>
<p>
<strong>Comment:</strong> LAUN_CAT_A for LAUN_CAT_T serves as threshold to trigger launch detection.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 5.0 (0.05)
</td>
<td style="vertical-align: top;">
0.05
</td>
<td style="vertical-align: top;">
s
</td>
<td style="vertical-align: top;">
<p>
Maximum Airspeed
</p>
<p>
<strong>Comment:</strong> If the airspeed is above this value, the TECS controller will try to decrease airspeed more aggressively.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 40 (0.5)
</td>
<td style="vertical-align: top;">
20.0
</td>
<td style="vertical-align: top;">
m/s
</td>
FW_AIRSPD_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
Minimum Airspeed
</p>
<p>
<strong>Comment:</strong> If the airspeed falls below this value, the TECS controller will try to increase airspeed more aggressively.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 40 (0.5)
</td>
<td style="vertical-align: top;">
10.0
</td>
<td style="vertical-align: top;">
m/s
</td>
FW_AIRSPD_TRIM (FLOAT)
<td style="vertical-align: top;">
<p>
Cruise Airspeed
</p>
<p>
<strong>Comment:</strong> The fixed wing controller tries to fly at this airspeed.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 40 (0.5)
</td>
<td style="vertical-align: top;">
15.0
</td>
<td style="vertical-align: top;">
m/s
</td>
FW_GND_SPD_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
Minimum groundspeed
</p>
<p>
<strong>Comment:</strong> The controller will increase the commanded airspeed to maintain this minimum groundspeed to the next waypoint.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 40 (0.5)
</td>
<td style="vertical-align: top;">
5.0
</td>
<td style="vertical-align: top;">
m/s
</td>
FW_T_CLMB_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum climb rate
</p>
<p>
<strong>Comment:</strong> This is the best climb rate that the aircraft can achieve with the throttle set to THR_MAX and the airspeed set to the default value. For electric aircraft make sure this number can be achieved towards the end of flight when the battery voltage has reduced. The setting of this parameter can be checked by commanding a positive altitude change of 100m in loiter, RTL or guided mode. If the throttle required to climb is close to THR_MAX and the aircraft is maintaining airspeed, then this parameter is set correctly. If the airspeed starts to reduce, then the parameter is set to high, and if the throttle demand required to climb and maintain speed is noticeably less than FW_THR_MAX, then either FW_T_CLMB_MAX should be increased or FW_THR_MAX reduced.
</p>
</td>
<td style="vertical-align: top;">
1.0 > 15.0 (0.5)
</td>
<td style="vertical-align: top;">
5.0
</td>
<td style="vertical-align: top;">
m/s
</td>
<td style="vertical-align: top;">
<p>
Integrator gain
</p>
<p>
<strong>Comment:</strong> This is the integrator gain on the control loop. Increasing this gain increases the speed at which speed and height offsets are trimmed out, but reduces damping and increases overshoot. Set this value to zero to completely disable all integrator action.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 2.0 (0.05)
</td>
<td style="vertical-align: top;">
0.1
</td>
<td style="vertical-align: top;">
</td>
FW_T_PTCH_DAMP (FLOAT)
<td style="vertical-align: top;">
<p>
Pitch damping factor
</p>
<p>
<strong>Comment:</strong> This is the damping gain for the pitch demand loop. Increase to add damping to correct for oscillations in height. The default value of 0.0 will work well provided the pitch to servo controller has been tuned properly.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 2.0 (0.1)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
FW_T_RLL2THR (FLOAT)
<td style="vertical-align: top;">
<p>
Roll -> Throttle feedforward
</p>
<p>
<strong>Comment:</strong> Increasing this gain turn increases the amount of throttle that will be used to compensate for the additional drag created by turning. Ideally this should be set to approximately 10 x the extra sink rate in m/s created by a 45 degree bank turn. Increase this gain if the aircraft initially loses energy in turns and reduce if the aircraft initially gains energy in turns. Efficient high aspect-ratio aircraft (eg powered sailplanes) can use a lower value, whereas inefficient low aspect-ratio models (eg delta wings) can use a higher value.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 20.0 (0.5)
</td>
<td style="vertical-align: top;">
15.0
</td>
<td style="vertical-align: top;">
</td>
FW_T_SINK_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum descent rate
</p>
<p>
<strong>Comment:</strong> This sets the maximum descent rate that the controller will use. If this value is too large, the aircraft can over-speed on descent. This should be set to a value that can be achieved without exceeding the lower pitch angle limit and without over-speeding the aircraft.
</p>
</td>
<td style="vertical-align: top;">
1.0 > 15.0 (0.5)
</td>
<td style="vertical-align: top;">
5.0
</td>
<td style="vertical-align: top;">
m/s
</td>
FW_T_SINK_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
Minimum descent rate
</p>
<p>
<strong>Comment:</strong> This is the sink rate of the aircraft with the throttle set to THR_MIN and flown at the same airspeed as used to measure FW_T_CLMB_MAX.
</p>
</td>
<td style="vertical-align: top;">
1.0 > 5.0 (0.5)
</td>
<td style="vertical-align: top;">
2.0
</td>
<td style="vertical-align: top;">
m/s
</td>
FW_T_SPDWEIGHT (FLOAT)
<td style="vertical-align: top;">
<p>
Speed <--> Altitude priority
</p>
<p>
<strong>Comment:</strong> This parameter adjusts the amount of weighting that the pitch control applies to speed vs height errors. Setting it to 0.0 will cause the pitch control to control height and ignore speed errors. This will normally improve height accuracy but give larger airspeed errors. Setting it to 2.0 will cause the pitch control loop to control speed and ignore height errors. This will normally reduce airspeed errors, but give larger height errors. The default value of 1.0 allows the pitch control to simultaneously control height and speed. Note to Glider Pilots - set this parameter to 2.0 (The glider will adjust its pitch angle to maintain airspeed, ignoring changes in height).
</p>
</td>
<td style="vertical-align: top;">
0.0 > 2.0 (1.0)
</td>
<td style="vertical-align: top;">
1.0
</td>
<td style="vertical-align: top;">
</td>
FW_T_SPD_OMEGA (FLOAT)
<td style="vertical-align: top;">
<p>
Complementary filter "omega" parameter for speed
</p>
<p>
<strong>Comment:</strong> This is the cross-over frequency (in radians/second) of the complementary filter used to fuse longitudinal acceleration and airspeed to obtain an improved airspeed estimate. Increasing this frequency weights the solution more towards use of the airspeed sensor, whilst reducing it weights the solution more towards use of the accelerometer data.
</p>
</td>
<td style="vertical-align: top;">
1.0 > 10.0 (0.5)
</td>
<td style="vertical-align: top;">
2.0
</td>
<td style="vertical-align: top;">
rad/s
</td>
<td style="vertical-align: top;">
<p>
TECS Throttle time constant
</p>
<p>
<strong>Comment:</strong> This is the time constant of the TECS throttle control algorithm (in seconds). Smaller values make it faster to respond, larger values make it slower to respond.
</p>
</td>
<td style="vertical-align: top;">
1.0 > 10.0 (0.5)
</td>
<td style="vertical-align: top;">
8.0
</td>
<td style="vertical-align: top;">
s
</td>
FW_T_THR_DAMP (FLOAT)
<td style="vertical-align: top;">
<p>
Throttle damping factor
</p>
<p>
<strong>Comment:</strong> This is the damping gain for the throttle demand loop. Increase to add damping to correct for oscillations in speed and height.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 2.0 (0.1)
</td>
<td style="vertical-align: top;">
0.5
</td>
<td style="vertical-align: top;">
</td>
FW_T_TIME_CONST (FLOAT)
<td style="vertical-align: top;">
<p>
TECS time constant
</p>
<p>
<strong>Comment:</strong> This is the time constant of the TECS control algorithm (in seconds). Smaller values make it faster to respond, larger values make it slower to respond.
</p>
</td>
<td style="vertical-align: top;">
1.0 > 10.0 (0.5)
</td>
<td style="vertical-align: top;">
5.0
</td>
<td style="vertical-align: top;">
s
</td>
FW_T_VERT_ACC (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum vertical acceleration
</p>
<p>
<strong>Comment:</strong> This is the maximum vertical acceleration (in m/s/s) either up or down that the controller will use to correct speed or height errors. The default value of 7 m/s/s (equivalent to +- 0.7 g) allows for reasonably aggressive pitch changes if required to recover from under-speed conditions.
</p>
</td>
<td style="vertical-align: top;">
1.0 > 10.0 (0.5)
</td>
<td style="vertical-align: top;">
7.0
</td>
<td style="vertical-align: top;">
m/s/s
</td>
<td style="vertical-align: top;">
<p>
Enable PWM input on AUX5 or MAIN5 (depending on board) for engaging failsafe from an external automatic trigger system (ATS)
</p>
<p>
<strong>Comment:</strong> External ATS is required by ASTM F3322-18.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
FD_EXT_ATS_TRIG (INT32)
<td style="vertical-align: top;">
<p>
The PWM threshold from external automatic trigger system for engaging failsafe
</p>
<p>
<strong>Comment:</strong> External ATS is required by ASTM F3322-18.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
1900
</td>
<td style="vertical-align: top;">
microseconds
</td>
FD_FAIL_P (INT32)
<td style="vertical-align: top;">
<p>
FailureDetector Max Pitch
</p>
<p>
<strong>Comment:</strong> Maximum pitch angle before FailureDetector triggers the attitude_failure flag If flight termination is enabled (@CBRK_FLIGHTTERM set to 0), the autopilot will terminate the flight and set all the outputs to their failsafe value as soon as the attitude_failure flag is set. Setting this parameter to 0 disables the check
</p>
</td>
<td style="vertical-align: top;">
60 > 180
</td>
<td style="vertical-align: top;">
60
</td>
<td style="vertical-align: top;">
degrees
</td>
FD_FAIL_P_TTRI (FLOAT)
<td style="vertical-align: top;">
<p>
Pitch failure trigger time
</p>
<p>
<strong>Comment:</strong> Seconds (decimal) that pitch has to exceed FD_FAIL_P before being considered as a failure.
</p>
</td>
<td style="vertical-align: top;">
0.02 > 5
</td>
<td style="vertical-align: top;">
0.3
</td>
<td style="vertical-align: top;">
s
</td>
FD_FAIL_R (INT32)
<td style="vertical-align: top;">
<p>
FailureDetector Max Roll
</p>
<p>
<strong>Comment:</strong> Maximum roll angle before FailureDetector triggers the attitude_failure flag If flight termination is enabled (@CBRK_FLIGHTTERM set to 0), the autopilot will terminate the flight and set all the outputs to their failsafe value as soon as the attitude_failure flag is set. Setting this parameter to 0 disables the check
</p>
</td>
<td style="vertical-align: top;">
60 > 180
</td>
<td style="vertical-align: top;">
60
</td>
<td style="vertical-align: top;">
degrees
</td>
FD_FAIL_R_TTRI (FLOAT)
<td style="vertical-align: top;">
<p>
Roll failure trigger time
</p>
<p>
<strong>Comment:</strong> Seconds (decimal) that roll has to exceed FD_FAIL_R before being considered as a failure.
</p>
</td>
<td style="vertical-align: top;">
0.02 > 5
</td>
<td style="vertical-align: top;">
0.3
</td>
<td style="vertical-align: top;">
s
</td>
<td style="vertical-align: top;">
<p>
Distance to follow target from
</p>
<p>
<strong>Comment:</strong> The distance in meters to follow the target at
</p>
</td>
<td style="vertical-align: top;">
1.0 > ?
</td>
<td style="vertical-align: top;">
8.0
</td>
<td style="vertical-align: top;">
meters
</td>
NAV_FT_FS (INT32)
<td style="vertical-align: top;">
<p>
Side to follow target from
</p>
<p>
<strong>Comment:</strong> The side to follow the target from (front right = 0, behind = 1, front = 2, front left = 3)
</p>
</td>
<td style="vertical-align: top;">
0 > 3
</td>
<td style="vertical-align: top;">
1
</td>
<td style="vertical-align: top;">
n/a
</td>
NAV_FT_RS (FLOAT)
<td style="vertical-align: top;">
<p>
Dynamic filtering algorithm responsiveness to target movement lower numbers increase the responsiveness to changing long lat but also ignore less noise
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0
</td>
<td style="vertical-align: top;">
0.5
</td>
<td style="vertical-align: top;">
n/a
</td>
NAV_MIN_FT_HT (FLOAT)
<td style="vertical-align: top;">
<p>
Minimum follow target altitude
</p>
<p>
<strong>Comment:</strong> The minimum height in meters relative to home for following a target
</p>
</td>
<td style="vertical-align: top;">
8.0 > ?
</td>
<td style="vertical-align: top;">
8.0
</td>
<td style="vertical-align: top;">
meters
</td>
<td style="vertical-align: top;">
<p>
Dump GPS communication to a file
</p>
<p>
<strong>Comment:</strong> If this is set to 1, all GPS communication data will be published via uORB, and written to the log file as gps_dump message.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Disable
</li>
<li>
<strong>1:</strong> Enable
</li>
</ul>
</td>
<td style="vertical-align: top;">
0 > 1
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
GPS_UBX_DYNMODEL (INT32)
<td style="vertical-align: top;">
<p>
u-blox GPS dynamic platform model
</p>
<p>
<strong>Comment:</strong> u-blox receivers support different dynamic platform models to adjust the navigation engine to the expected application environment.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>2:</strong> stationary
</li>
<li>
<strong>4:</strong> automotive
</li>
<li>
<strong>6:</strong> airborne with <1g acceleration
</li>
<li>
<strong>7:</strong> airborne with <2g acceleration
</li>
<li>
<strong>8:</strong> airborne with <4g acceleration
</li>
</ul>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 9
</td>
<td style="vertical-align: top;">
7
</td>
<td style="vertical-align: top;">
</td>
GPS_YAW_OFFSET (FLOAT)
<td style="vertical-align: top;">
<p>
Heading/Yaw offset for dual antenna GPS
</p>
<p>
<strong>Comment:</strong> Heading offset angle for dual antenna GPS setups that support heading estimation. (currently only for the Trimble MB-Two). Set this to 0 if the antennas are parallel to the forward-facing direction of the vehicle and the first antenna is in front. The offset angle increases counterclockwise. Set this to 90 if the first antenna is placed on the right side and the second on the left side of the vehicle.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 360
</td>
<td style="vertical-align: top;">
0.
</td>
<td style="vertical-align: top;">
deg
</td>
<td style="vertical-align: top;">
<p>
Loiter time
</p>
<p>
<strong>Comment:</strong> The time in seconds the system should do open loop loiter and wait for GPS recovery before it goes into flight termination. Set to 0 to disable.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 3600.0 (1)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
s
</td>
NAV_GPSF_P (FLOAT)
<td style="vertical-align: top;">
<p>
Fixed pitch angle
</p>
<p>
<strong>Comment:</strong> Pitch in degrees during the open loop loiter
</p>
</td>
<td style="vertical-align: top;">
-30.0 > 30.0 (0.5)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
deg
</td>
NAV_GPSF_R (FLOAT)
<td style="vertical-align: top;">
<p>
Fixed bank angle
</p>
<p>
<strong>Comment:</strong> Roll in degrees during the loiter
</p>
</td>
<td style="vertical-align: top;">
0.0 > 30.0 (0.5)
</td>
<td style="vertical-align: top;">
15.0
</td>
<td style="vertical-align: top;">
deg
</td>
NAV_GPSF_TR (FLOAT)
<td style="vertical-align: top;">
<p>
Thrust
</p>
<p>
<strong>Comment:</strong> Thrust value which is set during the open loop loiter
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0 (0.05)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
norm
</td>
<td style="vertical-align: top;">
<p>
Geofence violation action
</p>
<p>
<strong>Comment:</strong> Note: Setting this value to 4 enables flight termination, which will kill the vehicle on violation of the fence. Due to the inherent danger of this, this function is disabled using a software circuit breaker, which needs to be reset to 0 to really shut down the system.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> None
</li>
<li>
<strong>1:</strong> Warning
</li>
<li>
<strong>2:</strong> Hold mode
</li>
<li>
<strong>3:</strong> Return mode
</li>
<li>
<strong>4:</strong> Terminate
</li>
</ul>
</td>
<td style="vertical-align: top;">
0 > 4
</td>
<td style="vertical-align: top;">
1
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Geofence counter limit
</p>
<p>
<strong>Comment:</strong> Set how many subsequent position measurements outside of the fence are needed before geofence violation is triggered
</p>
</td>
<td style="vertical-align: top;">
-1 > 10 (1)
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
</td>
GF_MAX_HOR_DIST (FLOAT)
<td style="vertical-align: top;">
<p>
Max horizontal distance in meters
</p>
<p>
<strong>Comment:</strong> Maximum horizontal distance in meters the vehicle can be from home before triggering a geofence action. Disabled if 0.
</p>
</td>
<td style="vertical-align: top;">
0 > 10000 (1)
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
m
</td>
GF_MAX_VER_DIST (FLOAT)
<td style="vertical-align: top;">
<p>
Max vertical distance in meters
</p>
<p>
<strong>Comment:</strong> Maximum vertical distance in meters the vehicle can be from home before triggering a geofence action. Disabled if 0.
</p>
</td>
<td style="vertical-align: top;">
0 > 10000 (1)
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
m
</td>
GF_SOURCE (INT32)
<td style="vertical-align: top;">
<p>
Geofence source
</p>
<p>
<strong>Comment:</strong> Select which position source should be used. Selecting GPS instead of global position makes sure that there is no dependence on the position estimator 0 = global position, 1 = GPS
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> GPOS
</li>
<li>
<strong>1:</strong> GPS
</li>
</ul>
</td>
<td style="vertical-align: top;">
0 > 1
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Gate size for acceleration fusion
</p>
<p>
<strong>Comment:</strong> Sets the number of standard deviations used by the innovation consistency test.
</p>
</td>
<td style="vertical-align: top;">
1.0 > 10.0
</td>
<td style="vertical-align: top;">
3.0
</td>
<td style="vertical-align: top;">
SD
</td>
HTE_HT_ERR_INIT (FLOAT)
<td style="vertical-align: top;">
<p>
1-sigma initial hover thrust uncertainty
</p>
<p>
<strong>Comment:</strong> Sets the number of standard deviations used by the innovation consistency test.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0
</td>
<td style="vertical-align: top;">
0.1
</td>
<td style="vertical-align: top;">
normalized_thrust
</td>
HTE_HT_NOISE (FLOAT)
<td style="vertical-align: top;">
<p>
Hover thrust process noise
</p>
<p>
<strong>Comment:</strong> Reduce to make the hover thrust estimate more stable, increase if the real hover thrust is expected to change quickly over time.
</p>
</td>
<td style="vertical-align: top;">
0.0001 > 1.0
</td>
<td style="vertical-align: top;">
0.0005
</td>
<td style="vertical-align: top;">
normalized_thrust/s
</td>
<td style="vertical-align: top;">
<p>
Satellite radio read interval. Only required to be nonzero if data is not sent using a ring call
</p>
</td>
<td style="vertical-align: top;">
0 > 5000
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
s
</td>
<td style="vertical-align: top;">
<p>
Time [ms] the Iridium driver will wait for additional mavlink messages to combine them into one SBD message Value 0 turns the functionality off
</p>
</td>
<td style="vertical-align: top;">
0 > 500
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
ms
</td>
<td style="vertical-align: top;">
<p>
Airspeed max
</p>
<p>
<strong>Comment:</strong> Maximum airspeed allowed in the landed state (m/s)
</p>
</td>
<td style="vertical-align: top;">
4 > 20
</td>
<td style="vertical-align: top;">
8.00
</td>
<td style="vertical-align: top;">
m/s
</td>
LNDFW_VEL_XY_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Fixedwing max horizontal velocity
</p>
<p>
<strong>Comment:</strong> Maximum horizontal velocity allowed in the landed state (m/s)
</p>
</td>
<td style="vertical-align: top;">
0.5 > 10
</td>
<td style="vertical-align: top;">
5.0
</td>
<td style="vertical-align: top;">
m/s
</td>
LNDFW_VEL_Z_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Fixedwing max climb rate
</p>
<p>
<strong>Comment:</strong> Maximum vertical velocity allowed in the landed state (m/s up and down)
</p>
</td>
<td style="vertical-align: top;">
0.1 > 20
</td>
<td style="vertical-align: top;">
3.0
</td>
<td style="vertical-align: top;">
m/s
</td>
LNDFW_XYACC_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Fixedwing max horizontal acceleration
</p>
<p>
<strong>Comment:</strong> Maximum horizontal (x,y body axes) acceleration allowed in the landed state (m/s^2)
</p>
</td>
<td style="vertical-align: top;">
2 > 15
</td>
<td style="vertical-align: top;">
8.0
</td>
<td style="vertical-align: top;">
m/s^2
</td>
LNDMC_ALT_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum altitude for multicopters
</p>
<p>
<strong>Comment:</strong> The system will obey this limit as a hard altitude limit. This setting will be consolidated with the GF_MAX_VER_DIST parameter. A negative value indicates no altitude limitation.
</p>
</td>
<td style="vertical-align: top;">
-1 > 10000
</td>
<td style="vertical-align: top;">
-1.0
</td>
<td style="vertical-align: top;">
m
</td>
LNDMC_FFALL_THR (FLOAT)
<td style="vertical-align: top;">
<p>
Multicopter specific force threshold
</p>
<p>
<strong>Comment:</strong> Multicopter threshold on the specific force measured by accelerometers in m/s^2 for free-fall detection
</p>
</td>
<td style="vertical-align: top;">
0.1 > 10
</td>
<td style="vertical-align: top;">
2.0
</td>
<td style="vertical-align: top;">
m/s^2
</td>
LNDMC_FFALL_TTRI (FLOAT)
<td style="vertical-align: top;">
<p>
Multicopter free-fall trigger time
</p>
<p>
<strong>Comment:</strong> Seconds (decimal) that freefall conditions have to met before triggering a freefall. Minimal value is limited by LAND_DETECTOR_UPDATE_RATE=50Hz in landDetector.h
</p>
</td>
<td style="vertical-align: top;">
0.02 > 5
</td>
<td style="vertical-align: top;">
0.3
</td>
<td style="vertical-align: top;">
s
</td>
LNDMC_LOW_T_THR (FLOAT)
<td style="vertical-align: top;">
<p>
Low throttle detection threshold
</p>
<p>
<strong>Comment:</strong> Defines the commanded throttle value below which the land detector considers the vehicle to have "low thrust". This is one condition that is used to detect the ground contact state. The value is calculated as val = (MPC_THR_HOVER - MPC_THR_MIN) * LNDMC_LOW_T_THR + MPC_THR_MIN Increase this value if the system takes long time to detect landing.
</p>
</td>
<td style="vertical-align: top;">
0.1 > 0.9
</td>
<td style="vertical-align: top;">
0.3
</td>
<td style="vertical-align: top;">
norm
</td>
LNDMC_ROT_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Multicopter max rotation
</p>
<p>
<strong>Comment:</strong> Maximum allowed angular velocity around each axis allowed in the landed state.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
20.0
</td>
<td style="vertical-align: top;">
deg/s
</td>
LNDMC_XY_VEL_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Multicopter max horizontal velocity
</p>
<p>
<strong>Comment:</strong> Maximum horizontal velocity allowed in the landed state (m/s)
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
1.5
</td>
<td style="vertical-align: top;">
m/s
</td>
LNDMC_Z_VEL_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Multicopter max climb rate
</p>
<p>
<strong>Comment:</strong> Maximum vertical velocity allowed in the landed state (m/s up and down)
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0.50
</td>
<td style="vertical-align: top;">
m/s
</td>
LND_FLIGHT_T_HI (INT32)
<td style="vertical-align: top;">
<p>
Total flight time in microseconds
</p>
<p>
<strong>Comment:</strong> Total flight time of this autopilot. Higher 32 bits of the value. Flight time in microseconds = (LND_FLIGHT_T_HI << 32) | LND_FLIGHT_T_LO.
</p>
</td>
<td style="vertical-align: top;">
0 > ?
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
LND_FLIGHT_T_LO (INT32)
<td style="vertical-align: top;">
<p>
Total flight time in microseconds
</p>
<p>
<strong>Comment:</strong> Total flight time of this autopilot. Lower 32 bits of the value. Flight time in microseconds = (LND_FLIGHT_T_HI << 32) | LND_FLIGHT_T_LO.
</p>
</td>
<td style="vertical-align: top;">
0 > ?
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Acceleration uncertainty
</p>
<p>
<strong>Comment:</strong> Variance of acceleration measurement used for landing target position prediction. Higher values results in tighter following of the measurements and more lenient outlier rejection
</p>
</td>
<td style="vertical-align: top;">
0.01 > ?
</td>
<td style="vertical-align: top;">
10.0
</td>
<td style="vertical-align: top;">
(m/s^2)^2
</td>
LTEST_MEAS_UNC (FLOAT)
<td style="vertical-align: top;">
<p>
Landing target measurement uncertainty
</p>
<p>
<strong>Comment:</strong> Variance of the landing target measurement from the driver. Higher values results in less agressive following of the measurement and a smoother output as well as fewer rejected measurements.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0.005
</td>
<td style="vertical-align: top;">
tan(rad)^2
</td>
LTEST_MODE (INT32)
<td style="vertical-align: top;">
<p>
Landing target mode
</p>
<p>
<strong>Comment:</strong> Configure the mode of the landing target. Depending on the mode, the landing target observations are used differently to aid position estimation. Mode Moving: The landing target may be moving around while in the field of view of the vehicle. Landing target measurements are not used to aid positioning. Mode Stationary: The landing target is stationary. Measured velocity w.r.t. the landing target is used to aid velocity estimation.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Moving
</li>
<li>
<strong>1:</strong> Stationary
</li>
</ul>
</td>
<td style="vertical-align: top;">
0 > 1
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
LTEST_POS_UNC_IN (FLOAT)
<td style="vertical-align: top;">
<p>
Initial landing target position uncertainty
</p>
<p>
<strong>Comment:</strong> Initial variance of the relative landing target position in x and y direction
</p>
</td>
<td style="vertical-align: top;">
0.001 > ?
</td>
<td style="vertical-align: top;">
0.1
</td>
<td style="vertical-align: top;">
m^2
</td>
LTEST_SCALE_X (FLOAT)
<td style="vertical-align: top;">
<p>
Scale factor for sensor measurements in sensor x axis
</p>
<p>
<strong>Comment:</strong> Landing target x measurements are scaled by this factor before being used
</p>
</td>
<td style="vertical-align: top;">
0.01 > ?
</td>
<td style="vertical-align: top;">
1.0
</td>
<td style="vertical-align: top;">
</td>
LTEST_SCALE_Y (FLOAT)
<td style="vertical-align: top;">
<p>
Scale factor for sensor measurements in sensor y axis
</p>
<p>
<strong>Comment:</strong> Landing target y measurements are scaled by this factor before being used
</p>
</td>
<td style="vertical-align: top;">
0.01 > ?
</td>
<td style="vertical-align: top;">
1.0
</td>
<td style="vertical-align: top;">
</td>
LTEST_VEL_UNC_IN (FLOAT)
<td style="vertical-align: top;">
<p>
Initial landing target velocity uncertainty
</p>
<p>
<strong>Comment:</strong> Initial variance of the relative landing target velocity in x and y direction
</p>
</td>
<td style="vertical-align: top;">
0.001 > ?
</td>
<td style="vertical-align: top;">
0.1
</td>
<td style="vertical-align: top;">
(m/s)^2
</td>
<td style="vertical-align: top;">
<p>
Accelerometer xy noise density
</p>
<p>
<strong>Comment:</strong> Data sheet noise density = 150ug/sqrt(Hz) = 0.0015 m/s^2/sqrt(Hz) Larger than data sheet to account for tilt error.
</p>
</td>
<td style="vertical-align: top;">
0.00001 > 2
</td>
<td style="vertical-align: top;">
0.012
</td>
<td style="vertical-align: top;">
m/s^2/sqrt(Hz)
</td>
LPE_ACC_Z (FLOAT)
<td style="vertical-align: top;">
<p>
Accelerometer z noise density
</p>
<p>
<strong>Comment:</strong> Data sheet noise density = 150ug/sqrt(Hz) = 0.0015 m/s^2/sqrt(Hz)
</p>
</td>
<td style="vertical-align: top;">
0.00001 > 2
</td>
<td style="vertical-align: top;">
0.02
</td>
<td style="vertical-align: top;">
m/s^2/sqrt(Hz)
</td>
LPE_BAR_Z (FLOAT)
<td style="vertical-align: top;">
<p>
Barometric presssure altitude z standard deviation
</p>
</td>
<td style="vertical-align: top;">
0.01 > 100
</td>
<td style="vertical-align: top;">
3.0
</td>
<td style="vertical-align: top;">
m
</td>
LPE_EPH_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Max EPH allowed for GPS initialization
</p>
</td>
<td style="vertical-align: top;">
1.0 > 5.0
</td>
<td style="vertical-align: top;">
3.0
</td>
<td style="vertical-align: top;">
m
</td>
LPE_EPV_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Max EPV allowed for GPS initialization
</p>
</td>
<td style="vertical-align: top;">
1.0 > 5.0
</td>
<td style="vertical-align: top;">
5.0
</td>
<td style="vertical-align: top;">
m
</td>
LPE_FAKE_ORIGIN (INT32)
<td style="vertical-align: top;">
<p>
Enable publishing of a fake global position (e.g for AUTO missions using Optical Flow) by initializing the estimator to the LPE_LAT/LON parameters when global information is unavailable
</p>
</td>
<td style="vertical-align: top;">
0 > 1
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Integer bitmask controlling data fusion
</p>
<p>
<strong>Comment:</strong> Set bits in the following positions to enable: 0 : Set to true to fuse GPS data if available, also requires GPS for altitude init 1 : Set to true to fuse optical flow data if available 2 : Set to true to fuse vision position 3 : Set to true to enable landing target 4 : Set to true to fuse land detector 5 : Set to true to publish AGL as local position down component 6 : Set to true to enable flow gyro compensation 7 : Set to true to enable baro fusion default (145 - GPS, baro, land detector)
</p>
<strong>Bitmask:</strong>
<ul>
<li>
<strong>0:</strong> fuse GPS, requires GPS for alt. init
</li>
<li>
<strong>1:</strong> fuse optical flow
</li>
<li>
<strong>2:</strong> fuse vision position
</li>
<li>
<strong>3:</strong> fuse landing target
</li>
<li>
<strong>4:</strong> fuse land detector
</li>
<li>
<strong>5:</strong> pub agl as lpos down
</li>
<li>
<strong>6:</strong> flow gyro compensation
</li>
<li>
<strong>7:</strong> fuse baro
</li>
</ul>
</td>
<td style="vertical-align: top;">
0 > 255
</td>
<td style="vertical-align: top;">
145
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
GPS xy velocity standard deviation. EPV used if greater than this value
</p>
</td>
<td style="vertical-align: top;">
0.01 > 2
</td>
<td style="vertical-align: top;">
0.25
</td>
<td style="vertical-align: top;">
m/s
</td>
LPE_GPS_VZ (FLOAT)
<td style="vertical-align: top;">
<p>
GPS z velocity standard deviation
</p>
</td>
<td style="vertical-align: top;">
0.01 > 2
</td>
<td style="vertical-align: top;">
0.25
</td>
<td style="vertical-align: top;">
m/s
</td>
<td style="vertical-align: top;">
<p>
Enable MAVLink Message forwarding for instance 0
</p>
<p>
<strong>Comment:</strong> If enabled, forward incoming MAVLink messages to other MAVLink ports if the message is either broadcast or the target is not the autopilot. This allows for example a GCS to talk to a camera that is connected to the autopilot via MAVLink (on a different link than the GCS).
</p>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Enabled (1)
</td>
<td style="vertical-align: top;">
</td>
MAV_0_MODE (INT32)
<td style="vertical-align: top;">
<p>
MAVLink Mode for instance 0
</p>
<p>
<strong>Comment:</strong> The MAVLink Mode defines the set of streamed messages (for example the vehicle's attitude) and their sending rates.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Normal
</li>
<li>
<strong>1:</strong> Custom
</li>
<li>
<strong>2:</strong> Onboard
</li>
<li>
<strong>3:</strong> OSD
</li>
<li>
<strong>4:</strong> Magic
</li>
<li>
<strong>5:</strong> Config
</li>
<li>
<strong>7:</strong> Minimal
</li>
<li>
<strong>8:</strong> External Vision
</li>
</ul>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
MAV_0_RADIO_CTL (INT32)
<td style="vertical-align: top;">
<p>
Enable software throttling of mavlink on instance 0
</p>
<p>
<strong>Comment:</strong> If enabled, MAVLink messages will be throttled according to `txbuf` field reported by radio_status. Requires a radio to send the mavlink message RADIO_STATUS.
</p>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Enabled (1)
</td>
<td style="vertical-align: top;">
</td>
MAV_0_RATE (INT32)
<td style="vertical-align: top;">
<p>
Maximum MAVLink sending rate for instance 0
</p>
<p>
<strong>Comment:</strong> Configure the maximum sending rate for the MAVLink streams in Bytes/sec. If the configured streams exceed the maximum rate, the sending rate of each stream is automatically decreased. If this is set to 0 a value of half of the theoretical maximum bandwidth is used. This corresponds to baudrate/20 Bytes/s (baudrate/10 = maximum data rate on 8N1-configured links).
</p>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
0 > ?
</td>
<td style="vertical-align: top;">
1200
</td>
<td style="vertical-align: top;">
B/s
</td>
<td style="vertical-align: top;">
<p>
Enable MAVLink Message forwarding for instance 1
</p>
<p>
<strong>Comment:</strong> If enabled, forward incoming MAVLink messages to other MAVLink ports if the message is either broadcast or the target is not the autopilot. This allows for example a GCS to talk to a camera that is connected to the autopilot via MAVLink (on a different link than the GCS).
</p>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
MAV_1_MODE (INT32)
<td style="vertical-align: top;">
<p>
MAVLink Mode for instance 1
</p>
<p>
<strong>Comment:</strong> The MAVLink Mode defines the set of streamed messages (for example the vehicle's attitude) and their sending rates.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Normal
</li>
<li>
<strong>1:</strong> Custom
</li>
<li>
<strong>2:</strong> Onboard
</li>
<li>
<strong>3:</strong> OSD
</li>
<li>
<strong>4:</strong> Magic
</li>
<li>
<strong>5:</strong> Config
</li>
<li>
<strong>7:</strong> Minimal
</li>
<li>
<strong>8:</strong> External Vision
</li>
</ul>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
2
</td>
<td style="vertical-align: top;">
</td>
MAV_1_RADIO_CTL (INT32)
<td style="vertical-align: top;">
<p>
Enable software throttling of mavlink on instance 1
</p>
<p>
<strong>Comment:</strong> If enabled, MAVLink messages will be throttled according to `txbuf` field reported by radio_status. Requires a radio to send the mavlink message RADIO_STATUS.
</p>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Enabled (1)
</td>
<td style="vertical-align: top;">
</td>
MAV_1_RATE (INT32)
<td style="vertical-align: top;">
<p>
Maximum MAVLink sending rate for instance 1
</p>
<p>
<strong>Comment:</strong> Configure the maximum sending rate for the MAVLink streams in Bytes/sec. If the configured streams exceed the maximum rate, the sending rate of each stream is automatically decreased. If this is set to 0 a value of half of the theoretical maximum bandwidth is used. This corresponds to baudrate/20 Bytes/s (baudrate/10 = maximum data rate on 8N1-configured links).
</p>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
0 > ?
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
B/s
</td>
<td style="vertical-align: top;">
<p>
Enable MAVLink Message forwarding for instance 2
</p>
<p>
<strong>Comment:</strong> If enabled, forward incoming MAVLink messages to other MAVLink ports if the message is either broadcast or the target is not the autopilot. This allows for example a GCS to talk to a camera that is connected to the autopilot via MAVLink (on a different link than the GCS).
</p>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
MAV_2_MODE (INT32)
<td style="vertical-align: top;">
<p>
MAVLink Mode for instance 2
</p>
<p>
<strong>Comment:</strong> The MAVLink Mode defines the set of streamed messages (for example the vehicle's attitude) and their sending rates.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Normal
</li>
<li>
<strong>1:</strong> Custom
</li>
<li>
<strong>2:</strong> Onboard
</li>
<li>
<strong>3:</strong> OSD
</li>
<li>
<strong>4:</strong> Magic
</li>
<li>
<strong>5:</strong> Config
</li>
<li>
<strong>7:</strong> Minimal
</li>
<li>
<strong>8:</strong> External Vision
</li>
</ul>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
MAV_2_RADIO_CTL (INT32)
<td style="vertical-align: top;">
<p>
Enable software throttling of mavlink on instance 2
</p>
<p>
<strong>Comment:</strong> If enabled, MAVLink messages will be throttled according to `txbuf` field reported by radio_status. Requires a radio to send the mavlink message RADIO_STATUS.
</p>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Enabled (1)
</td>
<td style="vertical-align: top;">
</td>
MAV_2_RATE (INT32)
<td style="vertical-align: top;">
<p>
Maximum MAVLink sending rate for instance 2
</p>
<p>
<strong>Comment:</strong> Configure the maximum sending rate for the MAVLink streams in Bytes/sec. If the configured streams exceed the maximum rate, the sending rate of each stream is automatically decreased. If this is set to 0 a value of half of the theoretical maximum bandwidth is used. This corresponds to baudrate/20 Bytes/s (baudrate/10 = maximum data rate on 8N1-configured links).
</p>
<p>
<b>Reboot required:</b> True
</p>
</td>
<td style="vertical-align: top;">
0 > ?
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
B/s
</td>
MAV_BROADCAST (INT32)
<td style="vertical-align: top;">
<p>
Broadcast heartbeats on local network
</p>
<p>
<strong>Comment:</strong> This allows a ground control station to automatically find the drone on the local network.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Never broadcast
</li>
<li>
<strong>1:</strong> Always broadcast
</li>
<li>
<strong>2:</strong> Only multicast
</li>
</ul>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Forward external setpoint messages
</p>
<p>
<strong>Comment:</strong> If set to 1 incoming external setpoint messages will be directly forwarded to the controllers if in offboard control mode
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Enabled (1)
</td>
<td style="vertical-align: top;">
</td>
MAV_HASH_CHK_EN (INT32)
<td style="vertical-align: top;">
<p>
Parameter hash check
</p>
<p>
<strong>Comment:</strong> Disabling the parameter hash check functionality will make the mavlink instance stream parameters continuously.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Enabled (1)
</td>
<td style="vertical-align: top;">
</td>
MAV_HB_FORW_EN (INT32)
<td style="vertical-align: top;">
<p>
Hearbeat message forwarding
</p>
<p>
<strong>Comment:</strong> The mavlink hearbeat message will not be forwarded if this parameter is set to 'disabled'. The main reason for disabling heartbeats to be forwarded is because they confuse dronekit.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Enabled (1)
</td>
<td style="vertical-align: top;">
</td>
MAV_ODOM_LP (INT32)
<td style="vertical-align: top;">
<p>
Activate ODOMETRY loopback
</p>
<p>
<strong>Comment:</strong> If set, it gets the data from 'vehicle_visual_odometry' instead of 'vehicle_odometry' serving as a loopback of the received ODOMETRY messages on the Mavlink receiver.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
MAV_PROTO_VER (INT32)
<td style="vertical-align: top;">
<p>
MAVLink protocol version
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Default to 1, switch to 2 if GCS sends version 2
</li>
<li>
<strong>1:</strong> Always use version 1
</li>
<li>
<strong>2:</strong> Always use version 2
</li>
</ul>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
MAV_RADIO_TOUT (INT32)
<td style="vertical-align: top;">
<p>
Timeout in seconds for the RADIO_STATUS reports coming in
</p>
<p>
<strong>Comment:</strong> If the connected radio stops reporting RADIO_STATUS for a certain time, a warning is triggered and, if MAV_X_RADIO_CTL is enabled, the software-flow control is reset.
</p>
</td>
<td style="vertical-align: top;">
1 > 250
</td>
<td style="vertical-align: top;">
5
</td>
<td style="vertical-align: top;">
s
</td>
MAV_SIK_RADIO_ID (INT32)
<td style="vertical-align: top;">
<p>
MAVLink SiK Radio ID
</p>
<p>
<strong>Comment:</strong> When non-zero the MAVLink app will attempt to configure the SiK radio to this ID and re-set the parameter to 0. If the value is negative it will reset the complete radio config to factory defaults. Only applies if this mavlink instance is going through a SiK radio
</p>
</td>
<td style="vertical-align: top;">
-1 > 240
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Use/Accept HIL GPS message even if not in HIL mode
</p>
<p>
<strong>Comment:</strong> If set to 1 incoming HIL GPS messages are parsed.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Action after TAKEOFF has been accepted
</p>
<p>
<strong>Comment:</strong> The mode transition after TAKEOFF has completed successfully.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Hold
</li>
<li>
<strong>1:</strong> Mission (if valid)
</li>
</ul>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
MIS_ALTMODE (INT32)
<td style="vertical-align: top;">
<p>
Altitude setpoint mode
</p>
<p>
<strong>Comment:</strong> 0: the system will follow a zero order hold altitude setpoint 1: the system will follow a first order hold altitude setpoint values follow the definition in enum mission_altitude_mode
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Zero Order Hold
</li>
<li>
<strong>1:</strong> First Order Hold
</li>
</ul>
</td>
<td style="vertical-align: top;">
0 > 1
</td>
<td style="vertical-align: top;">
1
</td>
<td style="vertical-align: top;">
</td>
MIS_DIST_1WP (FLOAT)
<td style="vertical-align: top;">
<p>
Maximal horizontal distance from home to first waypoint
</p>
<p>
<strong>Comment:</strong> Failsafe check to prevent running mission stored from previous flight at a new takeoff location. Set a value of zero or less to disable. The mission will not be started if the current waypoint is more distant than MIS_DIS_1WP from the home position.
</p>
</td>
<td style="vertical-align: top;">
0 > 10000 (100)
</td>
<td style="vertical-align: top;">
900
</td>
<td style="vertical-align: top;">
m
</td>
MIS_DIST_WPS (FLOAT)
<td style="vertical-align: top;">
<p>
Maximal horizontal distance between waypoint
</p>
<p>
<strong>Comment:</strong> Failsafe check to prevent running missions which are way too big. Set a value of zero or less to disable. The mission will not be started if any distance between two subsequent waypoints is greater than MIS_DIST_WPS.
</p>
</td>
<td style="vertical-align: top;">
0 > 10000 (100)
</td>
<td style="vertical-align: top;">
900
</td>
<td style="vertical-align: top;">
m
</td>
MIS_LTRMIN_ALT (FLOAT)
<td style="vertical-align: top;">
<p>
Minimum Loiter altitude
</p>
<p>
<strong>Comment:</strong> This is the minimum altitude the system will always obey. The intent is to stay out of ground effect. set to -1, if there shouldn't be a minimum loiter altitude
</p>
</td>
<td style="vertical-align: top;">
-1 > 80 (0.5)
</td>
<td style="vertical-align: top;">
-1.0
</td>
<td style="vertical-align: top;">
m
</td>
MIS_MNT_YAW_CTL (INT32)
<td style="vertical-align: top;">
<p>
Enable yaw control of the mount. (Only affects multicopters and ROI mission items)
</p>
<p>
<strong>Comment:</strong> If enabled, yaw commands will be sent to the mount and the vehicle will follow its heading towards the flight direction. If disabled, the vehicle will yaw towards the ROI.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Disable
</li>
<li>
<strong>1:</strong> Enable
</li>
</ul>
</td>
<td style="vertical-align: top;">
0 > 1
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
MIS_TAKEOFF_ALT (FLOAT)
<td style="vertical-align: top;">
<p>
Take-off altitude
</p>
<p>
<strong>Comment:</strong> This is the minimum altitude the system will take off to.
</p>
</td>
<td style="vertical-align: top;">
0 > 80 (0.5)
</td>
<td style="vertical-align: top;">
2.5
</td>
<td style="vertical-align: top;">
m
</td>
MIS_TAKEOFF_REQ (INT32)
<td style="vertical-align: top;">
<p>
Take-off waypoint required
</p>
<p>
<strong>Comment:</strong> If set, the mission feasibility checker will check for a takeoff waypoint on the mission.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Time in seconds we wait on reaching target heading at a waypoint if it is forced
</p>
<p>
<strong>Comment:</strong> If set > 0 it will ignore the target heading for normal waypoint acceptance. If the waypoint forces the heading the timeout will matter. For example on VTOL forwards transition. Mainly useful for VTOLs that have less yaw authority and might not reach target yaw in wind. Disabled by default.
</p>
</td>
<td style="vertical-align: top;">
-1 > 20 (1)
</td>
<td style="vertical-align: top;">
-1.0
</td>
<td style="vertical-align: top;">
s
</td>
MPC_YAW_MODE (INT32)
<td style="vertical-align: top;">
<p>
Yaw mode
</p>
<p>
<strong>Comment:</strong> Specifies the heading in Auto.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> towards waypoint
</li>
<li>
<strong>1:</strong> towards home
</li>
<li>
<strong>2:</strong> away from home
</li>
<li>
<strong>3:</strong> along trajectory
</li>
<li>
<strong>4:</strong> towards waypoint (yaw first)
</li>
</ul>
</td>
<td style="vertical-align: top;">
0 > 4
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
NAV_ACC_RAD (FLOAT)
<td style="vertical-align: top;">
<p>
Acceptance Radius
</p>
<p>
<strong>Comment:</strong> Default acceptance radius, overridden by acceptance radius of waypoint if set. For fixed wing the L1 turning distance is used for horizontal acceptance.
</p>
</td>
<td style="vertical-align: top;">
0.05 > 200.0 (0.5)
</td>
<td style="vertical-align: top;">
10.0
</td>
<td style="vertical-align: top;">
m
</td>
NAV_DLL_ACT (INT32)
<td style="vertical-align: top;">
<p>
Set data link loss failsafe mode
</p>
<p>
<strong>Comment:</strong> The data link loss failsafe will only be entered after a timeout, set by COM_DL_LOSS_T in seconds. Once the timeout occurs the selected action will be executed. Setting this parameter to 4 will enable CASA Outback Challenge rules, which are only recommended to participants of that competition.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Disabled
</li>
<li>
<strong>1:</strong> Hold mode
</li>
<li>
<strong>2:</strong> Return mode
</li>
<li>
<strong>3:</strong> Land mode
</li>
<li>
<strong>4:</strong> Data Link Auto Recovery (CASA Outback Challenge rules)
</li>
<li>
<strong>5:</strong> Terminate
</li>
<li>
<strong>6:</strong> Lockdown
</li>
</ul>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
NAV_FORCE_VT (INT32)
<td style="vertical-align: top;">
<p>
Force VTOL mode takeoff and land
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Enabled (1)
</td>
<td style="vertical-align: top;">
</td>
NAV_FW_ALTL_RAD (FLOAT)
<td style="vertical-align: top;">
<p>
FW Altitude Acceptance Radius before a landing
</p>
<p>
<strong>Comment:</strong> Altitude acceptance used for the last waypoint before a fixed-wing landing. This is usually smaller than the standard vertical acceptance because close to the ground higher accuracy is required.
</p>
</td>
<td style="vertical-align: top;">
0.05 > 200.0
</td>
<td style="vertical-align: top;">
5.0
</td>
<td style="vertical-align: top;">
m
</td>
<td style="vertical-align: top;">
<p>
Set RC loss failsafe mode
</p>
<p>
<strong>Comment:</strong> The RC loss failsafe will only be entered after a timeout, set by COM_RC_LOSS_T in seconds. If RC input checks have been disabled by setting the COM_RC_IN_MODE param it will not be triggered. Setting this parameter to 4 will enable CASA Outback Challenge rules, which are only recommended to participants of that competition.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Disabled
</li>
<li>
<strong>1:</strong> Hold mode
</li>
<li>
<strong>2:</strong> Return mode
</li>
<li>
<strong>3:</strong> Land mode
</li>
<li>
<strong>4:</strong> RC Auto Recovery (CASA Outback Challenge rules)
</li>
<li>
<strong>5:</strong> Terminate
</li>
<li>
<strong>6:</strong> Lockdown
</li>
</ul>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
2
</td>
<td style="vertical-align: top;">
</td>
NAV_RCL_LT (FLOAT)
<td style="vertical-align: top;">
<p>
RC Loss Loiter Time (CASA Outback Challenge rules)
</p>
<p>
<strong>Comment:</strong> The amount of time in seconds the system should loiter at current position before termination. Only applies if NAV_RCL_ACT is set to 2 (CASA Outback Challenge rules). Set to -1 to make the system skip loitering.
</p>
</td>
<td style="vertical-align: top;">
-1.0 > ? (0.1)
</td>
<td style="vertical-align: top;">
120.0
</td>
<td style="vertical-align: top;">
s
</td>
NAV_TRAFF_AVOID (INT32)
<td style="vertical-align: top;">
<p>
Set traffic avoidance mode
</p>
<p>
<strong>Comment:</strong> Enabling this will allow the system to respond to transponder data from e.g. ADSB transponders
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Disabled
</li>
<li>
<strong>1:</strong> Warn only
</li>
<li>
<strong>2:</strong> Return mode
</li>
<li>
<strong>3:</strong> Land mode
</li>
<li>
<strong>4:</strong> Position Hold mode
</li>
</ul>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
1
</td>
<td style="vertical-align: top;">
</td>
NAV_TRAFF_A_RADM (FLOAT)
<td style="vertical-align: top;">
<p>
Set NAV TRAFFIC AVOID RADIUS MANNED
</p>
<p>
<strong>Comment:</strong> Defines the Radius where NAV TRAFFIC AVOID is Called For Manned Aviation
</p>
</td>
<td style="vertical-align: top;">
500 > ?
</td>
<td style="vertical-align: top;">
500
</td>
<td style="vertical-align: top;">
m
</td>
NAV_TRAFF_A_RADU (FLOAT)
<td style="vertical-align: top;">
<p>
Set NAV TRAFFIC AVOID RADIUS
</p>
<p>
<strong>Comment:</strong> Defines the Radius where NAV TRAFFIC AVOID is Called For Unmanned Aviation
</p>
</td>
<td style="vertical-align: top;">
10 > 500
</td>
<td style="vertical-align: top;">
10
</td>
<td style="vertical-align: top;">
m
</td>
<td style="vertical-align: top;">
<p>
Multicopter air-mode
</p>
<p>
<strong>Comment:</strong> The air-mode enables the mixer to increase the total thrust of the multirotor in order to keep attitude and rate control even at low and high throttle. This function should be disabled during tuning as it will help the controller to diverge if the closed-loop is unstable (i.e. the vehicle is not tuned yet). Enabling air-mode for yaw requires the use of an arming switch.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Disabled
</li>
<li>
<strong>1:</strong> Roll/Pitch
</li>
<li>
<strong>2:</strong> Roll/Pitch/Yaw
</li>
</ul>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
MOT_ORDERING (INT32)
<td style="vertical-align: top;">
<p>
Motor Ordering
</p>
<p>
<strong>Comment:</strong> Determines the motor ordering. This can be used for example in combination with a 4-in-1 ESC that assumes a motor ordering which is different from PX4. ONLY supported for Quads. When changing this, make sure to test the motor response without props first.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> PX4
</li>
<li>
<strong>1:</strong> Betaflight / Cleanflight
</li>
</ul>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Stabilize the mount (set to true for servo gimbal, false for passthrough). Does not affect MAVLINK_ROI input
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Mavlink Component ID of the mount
</p>
<p>
<strong>Comment:</strong> If MNT_MODE_OUT is MAVLINK, mount configure/control commands will be sent with this component ID.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
154
</td>
<td style="vertical-align: top;">
</td>
MNT_MAV_SYSID (INT32)
<td style="vertical-align: top;">
<p>
Mavlink System ID of the mount
</p>
<p>
<strong>Comment:</strong> If MNT_MODE_OUT is MAVLINK, mount configure/control commands will be sent with this target ID.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
1
</td>
<td style="vertical-align: top;">
</td>
MNT_MODE_IN (INT32)
<td style="vertical-align: top;">
<p>
Mount input mode
</p>
<p>
<strong>Comment:</strong> RC uses the AUX input channels (see MNT_MAN_* parameters), MAVLINK_ROI uses the MAV_CMD_DO_SET_ROI Mavlink message, and MAVLINK_DO_MOUNT the MAV_CMD_DO_MOUNT_CONFIGURE and MAV_CMD_DO_MOUNT_CONTROL messages to control a mount.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>-1:</strong> DISABLED
</li>
<li>
<strong>0:</strong> AUTO
</li>
<li>
<strong>1:</strong> RC
</li>
<li>
<strong>2:</strong> MAVLINK_ROI
</li>
<li>
<strong>3:</strong> MAVLINK_DO_MOUNT
</li>
</ul>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 3
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
</td>
MNT_MODE_OUT (INT32)
<td style="vertical-align: top;">
<p>
Mount output mode
</p>
<p>
<strong>Comment:</strong> AUX uses the mixer output Control Group #2. MAVLINK uses the MAV_CMD_DO_MOUNT_CONFIGURE and MAV_CMD_DO_MOUNT_CONTROL MavLink messages to control a mount (set MNT_MAV_SYSID & MNT_MAV_COMPID)
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> AUX
</li>
<li>
<strong>1:</strong> MAVLINK
</li>
</ul>
</td>
<td style="vertical-align: top;">
0 > 1
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
MNT_OB_LOCK_MODE (FLOAT)
<td style="vertical-align: top;">
<p>
Mixer value for selecting a locking mode if required for the gimbal (only in AUX output mode)
</p>
</td>
<td style="vertical-align: top;">
-1.0 > 1.0
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
MNT_OB_NORM_MODE (FLOAT)
<td style="vertical-align: top;">
<p>
Mixer value for selecting normal mode if required by the gimbal (only in AUX output mode)
</p>
</td>
<td style="vertical-align: top;">
-1.0 > 1.0
</td>
<td style="vertical-align: top;">
-1.0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Max pitch rate
</p>
<p>
<strong>Comment:</strong> Limit for pitch rate in manual and auto modes (except acro). Has effect for large rotations in autonomous mode, to avoid large control output and mixer saturation. This is not only limited by the vehicle's properties, but also by the maximum measurement rate of the gyro.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1800.0 (5)
</td>
<td style="vertical-align: top;">
220.0
</td>
<td style="vertical-align: top;">
deg/s
</td>
MC_PITCH_P (FLOAT)
<td style="vertical-align: top;">
<p>
Pitch P gain
</p>
<p>
<strong>Comment:</strong> Pitch proportional gain, i.e. desired angular speed in rad/s for error 1 rad.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 12 (0.1)
</td>
<td style="vertical-align: top;">
6.5
</td>
<td style="vertical-align: top;">
1/s
</td>
MC_RATT_TH (FLOAT)
<td style="vertical-align: top;">
<p>
Threshold for Rattitude mode
</p>
<p>
<strong>Comment:</strong> Manual input needed in order to override attitude control rate setpoints and instead pass manual stick inputs as rate setpoints
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0 (0.01)
</td>
<td style="vertical-align: top;">
0.8
</td>
<td style="vertical-align: top;">
</td>
MC_ROLLRATE_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Max roll rate
</p>
<p>
<strong>Comment:</strong> Limit for roll rate in manual and auto modes (except acro). Has effect for large rotations in autonomous mode, to avoid large control output and mixer saturation. This is not only limited by the vehicle's properties, but also by the maximum measurement rate of the gyro.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1800.0 (5)
</td>
<td style="vertical-align: top;">
220.0
</td>
<td style="vertical-align: top;">
deg/s
</td>
MC_ROLL_P (FLOAT)
<td style="vertical-align: top;">
<p>
Roll P gain
</p>
<p>
<strong>Comment:</strong> Roll proportional gain, i.e. desired angular speed in rad/s for error 1 rad.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 12 (0.1)
</td>
<td style="vertical-align: top;">
6.5
</td>
<td style="vertical-align: top;">
1/s
</td>
<td style="vertical-align: top;">
<p>
Yaw P gain
</p>
<p>
<strong>Comment:</strong> Yaw proportional gain, i.e. desired angular speed in rad/s for error 1 rad.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 5 (0.1)
</td>
<td style="vertical-align: top;">
2.8
</td>
<td style="vertical-align: top;">
1/s
</td>
MPC_YAWRAUTO_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Max yaw rate in auto mode
</p>
<p>
<strong>Comment:</strong> Limit the rate of change of the yaw setpoint in autonomous mode to avoid large control output and mixer saturation.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 360.0 (5)
</td>
<td style="vertical-align: top;">
45.0
</td>
<td style="vertical-align: top;">
deg/s
</td>
<td style="vertical-align: top;">
<p>
Average delay of the range sensor message plus the tracking delay of the position controller in seconds
</p>
<p>
<strong>Comment:</strong> Only used in Position mode.
</p>
</td>
<td style="vertical-align: top;">
0 > 1
</td>
<td style="vertical-align: top;">
0.4
</td>
<td style="vertical-align: top;">
seconds
</td>
CP_DIST (FLOAT)
<td style="vertical-align: top;">
<p>
Minimum distance the vehicle should keep to all obstacles
</p>
<p>
<strong>Comment:</strong> Only used in Position mode. Collision avoidance is disabled by setting this parameter to a negative value
</p>
</td>
<td style="vertical-align: top;">
-1 > 15
</td>
<td style="vertical-align: top;">
-1.0
</td>
<td style="vertical-align: top;">
meters
</td>
CP_GO_NO_DATA (FLOAT)
<td style="vertical-align: top;">
<p>
Boolean to allow moving into directions where there is no sensor data (outside FOV)
</p>
<p>
<strong>Comment:</strong> Only used in Position mode.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
CP_GUIDE_ANG (FLOAT)
<td style="vertical-align: top;">
<p>
Angle left/right from the commanded setpoint by which the collision prevention algorithm can choose to change the setpoint direction
</p>
<p>
<strong>Comment:</strong> Only used in Position mode.
</p>
</td>
<td style="vertical-align: top;">
0 > 90
</td>
<td style="vertical-align: top;">
30.
</td>
<td style="vertical-align: top;">
[deg]
</td>
<td style="vertical-align: top;">
<p>
Acceleration for auto and for manual
</p>
<p>
<strong>Comment:</strong> Note: In manual, this parameter is only used in MPC_POS_MODE 1.
</p>
</td>
<td style="vertical-align: top;">
2.0 > 15.0 (1)
</td>
<td style="vertical-align: top;">
3.0
</td>
<td style="vertical-align: top;">
m/s/s
</td>
MPC_ACC_HOR_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum horizontal acceleration for auto mode and for manual mode
</p>
<p>
<strong>Comment:</strong> Maximum deceleration for MPC_POS_MODE 1 and 2. Maximum acceleration and deceleration for MPC_POS_MODE 3.
</p>
</td>
<td style="vertical-align: top;">
2.0 > 15.0 (1)
</td>
<td style="vertical-align: top;">
5.0
</td>
<td style="vertical-align: top;">
m/s/s
</td>
<td style="vertical-align: top;">
<p>
Altitude control mode
</p>
<p>
<strong>Comment:</strong> Set to 0 to control height relative to the earth frame origin. This origin may move up and down in flight due to sensor drift. Set to 1 to control height relative to estimated distance to ground. The vehicle will move up and down with terrain height variation. Requires a distance to ground sensor. The height controller will revert to using height above origin if the distance to ground estimate becomes invalid as indicated by the local_position.distance_bottom_valid message being false. Set to 2 to control height relative to ground (requires a distance sensor) when stationary and relative to earth frame origin when moving horizontally. The speed threshold is controlled by the MPC_HOLD_MAX_XY parameter.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Altitude following
</li>
<li>
<strong>1:</strong> Terrain following
</li>
<li>
<strong>2:</strong> Terrain hold
</li>
</ul>
</td>
<td style="vertical-align: top;">
0 > 2
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
MPC_DEC_HOR_SLOW (FLOAT)
<td style="vertical-align: top;">
<p>
Slow horizontal manual deceleration for manual mode
</p>
<p>
<strong>Comment:</strong> Note: This is only used when MPC_POS_MODE is set to 1.
</p>
</td>
<td style="vertical-align: top;">
0.5 > 10.0 (1)
</td>
<td style="vertical-align: top;">
5.0
</td>
<td style="vertical-align: top;">
m/s/s
</td>
MPC_HOLD_DZ (FLOAT)
<td style="vertical-align: top;">
<p>
Deadzone of sticks where position hold is enabled
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0
</td>
<td style="vertical-align: top;">
0.1
</td>
<td style="vertical-align: top;">
</td>
MPC_HOLD_MAX_XY (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum horizontal velocity for which position hold is enabled (use 0 to disable check)
</p>
</td>
<td style="vertical-align: top;">
0.0 > 3.0
</td>
<td style="vertical-align: top;">
0.8
</td>
<td style="vertical-align: top;">
m/s
</td>
MPC_HOLD_MAX_Z (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum vertical velocity for which position hold is enabled (use 0 to disable check)
</p>
</td>
<td style="vertical-align: top;">
0.0 > 3.0
</td>
<td style="vertical-align: top;">
0.6
</td>
<td style="vertical-align: top;">
m/s
</td>
MPC_JERK_AUTO (FLOAT)
<td style="vertical-align: top;">
<p>
Jerk limit in auto mode
</p>
<p>
<strong>Comment:</strong> Limit the maximum jerk of the vehicle (how fast the acceleration can change). A lower value leads to smoother vehicle motions, but it also limits its agility.
</p>
</td>
<td style="vertical-align: top;">
5.0 > 80.0 (1)
</td>
<td style="vertical-align: top;">
8.0
</td>
<td style="vertical-align: top;">
m/s/s/s
</td>
MPC_JERK_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum jerk limit
</p>
<p>
<strong>Comment:</strong> Limit the maximum jerk of the vehicle (how fast the acceleration can change). A lower value leads to smoother vehicle motions, but it also limits its agility (how fast it can change directions or break). Setting this to the maximum value essentially disables the limit. Note: This is only used when MPC_POS_MODE is set to a smoothing mode 1 or 3.
</p>
</td>
<td style="vertical-align: top;">
0.5 > 500.0 (1)
</td>
<td style="vertical-align: top;">
20.0
</td>
<td style="vertical-align: top;">
m/s/s/s
</td>
MPC_JERK_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
Velocity-based jerk limit
</p>
<p>
<strong>Comment:</strong> If this is not zero, a velocity-based maximum jerk limit is used: the applied jerk limit linearly increases with the vehicle's velocity between MPC_JERK_MIN (zero velocity) and MPC_JERK_MAX (maximum velocity). This means that the vehicle's motions are smooth for low velocities, but still allows fast direction changes or breaking at higher velocities. Set this to zero to use a fixed maximum jerk limit (MPC_JERK_MAX). Note: This is only used when MPC_POS_MODE is set to 1.
</p>
</td>
<td style="vertical-align: top;">
0 > 30.0 (1)
</td>
<td style="vertical-align: top;">
8.0
</td>
<td style="vertical-align: top;">
m/s/s/s
</td>
MPC_LAND_ALT1 (FLOAT)
<td style="vertical-align: top;">
<p>
Altitude for 1. step of slow landing (descend)
</p>
<p>
<strong>Comment:</strong> Below this altitude: - descending velocity gets limited to a value between "MPC_Z_VEL_MAX" and "MPC_LAND_SPEED" - horizontal velocity gets limited to a value between "MPC_VEL_MANUAL" and "MPC_LAND_VEL_XY" for a smooth descent and landing experience. Value needs to be higher than "MPC_LAND_ALT2"
</p>
</td>
<td style="vertical-align: top;">
0 > 122
</td>
<td style="vertical-align: top;">
10.0
</td>
<td style="vertical-align: top;">
m
</td>
MPC_LAND_ALT2 (FLOAT)
<td style="vertical-align: top;">
<p>
Altitude for 2. step of slow landing (landing)
</p>
<p>
<strong>Comment:</strong> Below this altitude descending and horizontal velocities get limited to "MPC_LAND_SPEED" and "MPC_LAND_VEL_XY", respectively. Value needs to be lower than "MPC_LAND_ALT1"
</p>
</td>
<td style="vertical-align: top;">
0 > 122
</td>
<td style="vertical-align: top;">
5.0
</td>
<td style="vertical-align: top;">
m
</td>
<td style="vertical-align: top;">
<p>
Maximum horizontal velocity during landing Set the value higher than the otherwise expected maximum to disable any slowdown
</p>
</td>
<td style="vertical-align: top;">
0 > ?
</td>
<td style="vertical-align: top;">
2.
</td>
<td style="vertical-align: top;">
m/s
</td>
MPC_MANTHR_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
Minimum manual thrust
</p>
<p>
<strong>Comment:</strong> Minimum vertical thrust. It's recommended to set it > 0 to avoid free fall with zero thrust. With MC_AIRMODE set to 1, this can safely be set to 0.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0 (0.01)
</td>
<td style="vertical-align: top;">
0.08
</td>
<td style="vertical-align: top;">
norm
</td>
<td style="vertical-align: top;">
<p>
Manual yaw rate input filter time constant Setting this parameter to 0 disables the filter
</p>
</td>
<td style="vertical-align: top;">
0.0 > 5.0
</td>
<td style="vertical-align: top;">
0.08
</td>
<td style="vertical-align: top;">
s
</td>
MPC_POS_MODE (INT32)
<td style="vertical-align: top;">
<p>
Manual-Position control sub-mode
</p>
<p>
<strong>Comment:</strong> The supported sub-modes are: 0 Default position control where sticks map to position/velocity directly. Maximum speeds is MPC_VEL_MANUAL. 1 Smooth position control where setpoints are adjusted based on acceleration limits and jerk limits. 2 Sport mode that is the same Default position control but with velocity limits set to the maximum allowed speeds (MPC_XY_VEL_MAX) 3 Smooth position control with maximum acceleration and jerk limits (different algorithm than 1).
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Default position control
</li>
<li>
<strong>1:</strong> Smooth position control
</li>
<li>
<strong>2:</strong> Sport position control
</li>
<li>
<strong>3:</strong> Smooth position control (Velocity)
</li>
</ul>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
3
</td>
<td style="vertical-align: top;">
</td>
MPC_SPOOLUP_TIME (FLOAT)
<td style="vertical-align: top;">
<p>
Enforced delay between arming and takeoff
</p>
<p>
<strong>Comment:</strong> For altitude controlled modes the time from arming the motors until a takeoff is possible gets forced to be at least MPC_SPOOLUP_TIME seconds to ensure the motors and propellers can sppol up and reach idle speed before getting commanded to spin faster. This delay is particularly useful for vehicles with slow motor spin-up e.g. because of large propellers.
</p>
</td>
<td style="vertical-align: top;">
0 > 10
</td>
<td style="vertical-align: top;">
1.0
</td>
<td style="vertical-align: top;">
s
</td>
MPC_THR_CURVE (INT32)
<td style="vertical-align: top;">
<p>
Thrust curve in Manual Mode
</p>
<p>
<strong>Comment:</strong> This parameter defines how the throttle stick input is mapped to commanded thrust in Manual/Stabilized flight mode. In case the default is used ('Rescale to hover thrust'), the stick input is linearly rescaled, such that a centered stick corresponds to the hover throttle (see MPC_THR_HOVER). Select 'No Rescale' to directly map the stick 1:1 to the output. This can be useful in case the hover thrust is very low and the default would lead to too much distortion (e.g. if hover thrust is set to 20%, 80% of the upper thrust range is squeezed into the upper half of the stick range). Note: In case MPC_THR_HOVER is set to 50%, the modes 0 and 1 are the same.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Rescale to hover thrust
</li>
<li>
<strong>1:</strong> No Rescale
</li>
</ul>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
MPC_THR_HOVER (FLOAT)
<td style="vertical-align: top;">
<p>
Hover thrust
</p>
<p>
<strong>Comment:</strong> Vertical thrust required to hover. This value is mapped to center stick for manual throttle control. With this value set to the thrust required to hover, transition from manual to Altitude or Position mode while hovering will occur with the throttle stick near center, which is then interpreted as (near) zero demand for vertical speed. This parameter is also important for the landing detection to work correctly.
</p>
</td>
<td style="vertical-align: top;">
0.1 > 0.8 (0.01)
</td>
<td style="vertical-align: top;">
0.5
</td>
<td style="vertical-align: top;">
norm
</td>
MPC_THR_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum thrust in auto thrust control
</p>
<p>
<strong>Comment:</strong> Limit max allowed thrust
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0 (0.01)
</td>
<td style="vertical-align: top;">
1.0
</td>
<td style="vertical-align: top;">
norm
</td>
MPC_THR_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
Minimum thrust in auto thrust control
</p>
<p>
<strong>Comment:</strong> It's recommended to set it > 0 to avoid free fall with zero thrust.
</p>
</td>
<td style="vertical-align: top;">
0.05 > 1.0 (0.01)
</td>
<td style="vertical-align: top;">
0.12
</td>
<td style="vertical-align: top;">
norm
</td>
MPC_TILTMAX_AIR (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum tilt angle in air
</p>
<p>
<strong>Comment:</strong> Limits maximum tilt in AUTO and POSCTRL modes during flight.
</p>
</td>
<td style="vertical-align: top;">
20.0 > 180.0
</td>
<td style="vertical-align: top;">
45.0
</td>
<td style="vertical-align: top;">
deg
</td>
MPC_TILTMAX_LND (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum tilt during landing
</p>
<p>
<strong>Comment:</strong> Limits maximum tilt angle on landing.
</p>
</td>
<td style="vertical-align: top;">
10.0 > 90.0
</td>
<td style="vertical-align: top;">
12.0
</td>
<td style="vertical-align: top;">
deg
</td>
MPC_TKO_RAMP_T (FLOAT)
<td style="vertical-align: top;">
<p>
Position control smooth takeoff ramp time constant
</p>
<p>
<strong>Comment:</strong> Increasing this value will make automatic and manual takeoff slower. If it's too slow the drone might scratch the ground and tip over. A time constant of 0 disables the ramp
</p>
</td>
<td style="vertical-align: top;">
0 > 5
</td>
<td style="vertical-align: top;">
3.0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Maximum horizontal velocity setpoint for manual controlled mode If velocity setpoint larger than MPC_XY_VEL_MAX is set, then the setpoint will be capped to MPC_XY_VEL_MAX
</p>
</td>
<td style="vertical-align: top;">
3.0 > 20.0 (1)
</td>
<td style="vertical-align: top;">
10.0
</td>
<td style="vertical-align: top;">
m/s
</td>
MPC_XY_CRUISE (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum horizontal velocity in mission
</p>
<p>
<strong>Comment:</strong> Normal horizontal velocity in AUTO modes (includes also RTL / hold / etc.) and endpoint for position stabilized mode (POSCTRL).
</p>
</td>
<td style="vertical-align: top;">
3.0 > 20.0 (1)
</td>
<td style="vertical-align: top;">
5.0
</td>
<td style="vertical-align: top;">
m/s
</td>
MPC_XY_MAN_EXPO (FLOAT)
<td style="vertical-align: top;">
<p>
Manual position control stick exponential curve sensitivity
</p>
<p>
<strong>Comment:</strong> The higher the value the less sensitivity the stick has around zero while still reaching the maximum value with full stick deflection. 0 Purely linear input curve (default) 1 Purely cubic input curve
</p>
</td>
<td style="vertical-align: top;">
0 > 1
</td>
<td style="vertical-align: top;">
0.6
</td>
<td style="vertical-align: top;">
</td>
MPC_XY_P (FLOAT)
<td style="vertical-align: top;">
<p>
Proportional gain for horizontal position error
</p>
</td>
<td style="vertical-align: top;">
0.0 > 2.0
</td>
<td style="vertical-align: top;">
0.95
</td>
<td style="vertical-align: top;">
</td>
MPC_XY_TRAJ_P (FLOAT)
<td style="vertical-align: top;">
<p>
Proportional gain for horizontal trajectory position error
</p>
</td>
<td style="vertical-align: top;">
0.1 > 1.0
</td>
<td style="vertical-align: top;">
0.5
</td>
<td style="vertical-align: top;">
</td>
MPC_XY_VEL_D (FLOAT)
<td style="vertical-align: top;">
<p>
Differential gain for horizontal velocity error. Small values help reduce fast oscillations. If value is too big oscillations will appear again
</p>
</td>
<td style="vertical-align: top;">
0.005 > 0.1
</td>
<td style="vertical-align: top;">
0.01
</td>
<td style="vertical-align: top;">
</td>
MPC_XY_VEL_I (FLOAT)
<td style="vertical-align: top;">
<p>
Integral gain for horizontal velocity error
</p>
<p>
<strong>Comment:</strong> Non-zero value allows to eliminate steady state errors in the presence of disturbances like wind.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 3.0
</td>
<td style="vertical-align: top;">
0.02
</td>
<td style="vertical-align: top;">
</td>
MPC_XY_VEL_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum horizontal velocity
</p>
<p>
<strong>Comment:</strong> Maximum horizontal velocity in AUTO mode. If higher speeds are commanded in a mission they will be capped to this velocity.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 20.0 (1)
</td>
<td style="vertical-align: top;">
12.0
</td>
<td style="vertical-align: top;">
m/s
</td>
<td style="vertical-align: top;">
<p>
Manual control stick yaw rotation exponential curve
</p>
<p>
<strong>Comment:</strong> The higher the value the less sensitivity the stick has around zero while still reaching the maximum value with full stick deflection. 0 Purely linear input curve (default) 1 Purely cubic input curve
</p>
</td>
<td style="vertical-align: top;">
0 > 1
</td>
<td style="vertical-align: top;">
0.6
</td>
<td style="vertical-align: top;">
</td>
MPC_Z_MAN_EXPO (FLOAT)
<td style="vertical-align: top;">
<p>
Manual control stick vertical exponential curve
</p>
<p>
<strong>Comment:</strong> The higher the value the less sensitivity the stick has around zero while still reaching the maximum value with full stick deflection. 0 Purely linear input curve (default) 1 Purely cubic input curve
</p>
</td>
<td style="vertical-align: top;">
0 > 1
</td>
<td style="vertical-align: top;">
0.6
</td>
<td style="vertical-align: top;">
</td>
MPC_Z_P (FLOAT)
<td style="vertical-align: top;">
<p>
Proportional gain for vertical position error
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.5
</td>
<td style="vertical-align: top;">
1.0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Max acro roll rate default: 2 turns per second
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1800.0 (5)
</td>
<td style="vertical-align: top;">
720.0
</td>
<td style="vertical-align: top;">
deg/s
</td>
MC_ACRO_SUPEXPO (FLOAT)
<td style="vertical-align: top;">
<p>
Acro mode SuperExpo factor for Roll and Pitch
</p>
<p>
<strong>Comment:</strong> SuperExpo factor for refining the input curve shape tuned using MC_ACRO_EXPO. 0 Pure Expo function 0.7 resonable shape enhancement for intuitive stick feel 0.95 very strong bent input curve only near maxima have effect
</p>
</td>
<td style="vertical-align: top;">
0 > 0.95
</td>
<td style="vertical-align: top;">
0.7
</td>
<td style="vertical-align: top;">
</td>
MC_ACRO_SUPEXPOY (FLOAT)
<td style="vertical-align: top;">
<p>
Acro mode SuperExpo factor for Yaw
</p>
<p>
<strong>Comment:</strong> SuperExpo factor for refining the input curve shape tuned using MC_ACRO_EXPO_Y. 0 Pure Expo function 0.7 resonable shape enhancement for intuitive stick feel 0.95 very strong bent input curve only near maxima have effect
</p>
</td>
<td style="vertical-align: top;">
0 > 0.95
</td>
<td style="vertical-align: top;">
0.7
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Battery power level scaler
</p>
<p>
<strong>Comment:</strong> This compensates for voltage drop of the battery over time by attempting to normalize performance across the operating range of the battery. The copter should constantly behave as if it was fully charged with reduced max acceleration at lower battery percentages. i.e. if hover is at 0.5 throttle at 100% battery, it will still be 0.5 at 60% battery.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
MC_DTERM_CUTOFF (FLOAT)
<td style="vertical-align: top;">
<p>
Cutoff frequency for the low pass filter on the D-term in the rate controller
</p>
<p>
<strong>Comment:</strong> The D-term uses the derivative of the rate and thus is the most susceptible to noise. Therefore, using a D-term filter allows to decrease the driver-level filtering, which leads to reduced control latency and permits to increase the P gains. A value of 0 disables the filter.
</p>
</td>
<td style="vertical-align: top;">
0 > 1000 (10)
</td>
<td style="vertical-align: top;">
0.
</td>
<td style="vertical-align: top;">
Hz
</td>
MC_PITCHRATE_D (FLOAT)
<td style="vertical-align: top;">
<p>
Pitch rate D gain
</p>
<p>
<strong>Comment:</strong> Pitch rate differential gain. Small values help reduce fast oscillations. If value is too big oscillations will appear again.
</p>
</td>
<td style="vertical-align: top;">
0.0 > ? (0.0005)
</td>
<td style="vertical-align: top;">
0.003
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Pitch rate I gain
</p>
<p>
<strong>Comment:</strong> Pitch rate integral gain. Can be set to compensate static thrust difference or gravity center offset.
</p>
</td>
<td style="vertical-align: top;">
0.0 > ? (0.01)
</td>
<td style="vertical-align: top;">
0.2
</td>
<td style="vertical-align: top;">
</td>
MC_PITCHRATE_K (FLOAT)
<td style="vertical-align: top;">
<p>
Pitch rate controller gain
</p>
<p>
<strong>Comment:</strong> Global gain of the controller. This gain scales the P, I and D terms of the controller: output = MC_PITCHRATE_K * (MC_PITCHRATE_P * error + MC_PITCHRATE_I * error_integral + MC_PITCHRATE_D * error_derivative) Set MC_PITCHRATE_P=1 to implement a PID in the ideal form. Set MC_PITCHRATE_K=1 to implement a PID in the parallel form.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 5.0 (0.0005)
</td>
<td style="vertical-align: top;">
1.0
</td>
<td style="vertical-align: top;">
</td>
MC_PITCHRATE_P (FLOAT)
<td style="vertical-align: top;">
<p>
Pitch rate P gain
</p>
<p>
<strong>Comment:</strong> Pitch rate proportional gain, i.e. control output for angular speed error 1 rad/s.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 0.6 (0.01)
</td>
<td style="vertical-align: top;">
0.15
</td>
<td style="vertical-align: top;">
</td>
MC_PR_INT_LIM (FLOAT)
<td style="vertical-align: top;">
<p>
Pitch rate integrator limit
</p>
<p>
<strong>Comment:</strong> Pitch rate integrator limit. Can be set to increase the amount of integrator available to counteract disturbances or reduced to improve settling time after large pitch moment trim changes.
</p>
</td>
<td style="vertical-align: top;">
0.0 > ? (0.01)
</td>
<td style="vertical-align: top;">
0.30
</td>
<td style="vertical-align: top;">
</td>
MC_ROLLRATE_D (FLOAT)
<td style="vertical-align: top;">
<p>
Roll rate D gain
</p>
<p>
<strong>Comment:</strong> Roll rate differential gain. Small values help reduce fast oscillations. If value is too big oscillations will appear again.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 0.01 (0.0005)
</td>
<td style="vertical-align: top;">
0.003
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Roll rate I gain
</p>
<p>
<strong>Comment:</strong> Roll rate integral gain. Can be set to compensate static thrust difference or gravity center offset.
</p>
</td>
<td style="vertical-align: top;">
0.0 > ? (0.01)
</td>
<td style="vertical-align: top;">
0.2
</td>
<td style="vertical-align: top;">
</td>
MC_ROLLRATE_K (FLOAT)
<td style="vertical-align: top;">
<p>
Roll rate controller gain
</p>
<p>
<strong>Comment:</strong> Global gain of the controller. This gain scales the P, I and D terms of the controller: output = MC_ROLLRATE_K * (MC_ROLLRATE_P * error + MC_ROLLRATE_I * error_integral + MC_ROLLRATE_D * error_derivative) Set MC_ROLLRATE_P=1 to implement a PID in the ideal form. Set MC_ROLLRATE_K=1 to implement a PID in the parallel form.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 5.0 (0.0005)
</td>
<td style="vertical-align: top;">
1.0
</td>
<td style="vertical-align: top;">
</td>
MC_ROLLRATE_P (FLOAT)
<td style="vertical-align: top;">
<p>
Roll rate P gain
</p>
<p>
<strong>Comment:</strong> Roll rate proportional gain, i.e. control output for angular speed error 1 rad/s.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 0.5 (0.01)
</td>
<td style="vertical-align: top;">
0.15
</td>
<td style="vertical-align: top;">
</td>
MC_RR_INT_LIM (FLOAT)
<td style="vertical-align: top;">
<p>
Roll rate integrator limit
</p>
<p>
<strong>Comment:</strong> Roll rate integrator limit. Can be set to increase the amount of integrator available to counteract disturbances or reduced to improve settling time after large roll moment trim changes.
</p>
</td>
<td style="vertical-align: top;">
0.0 > ? (0.01)
</td>
<td style="vertical-align: top;">
0.30
</td>
<td style="vertical-align: top;">
</td>
MC_YAWRATE_D (FLOAT)
<td style="vertical-align: top;">
<p>
Yaw rate D gain
</p>
<p>
<strong>Comment:</strong> Yaw rate differential gain. Small values help reduce fast oscillations. If value is too big oscillations will appear again.
</p>
</td>
<td style="vertical-align: top;">
0.0 > ? (0.01)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Yaw rate I gain
</p>
<p>
<strong>Comment:</strong> Yaw rate integral gain. Can be set to compensate static thrust difference or gravity center offset.
</p>
</td>
<td style="vertical-align: top;">
0.0 > ? (0.01)
</td>
<td style="vertical-align: top;">
0.1
</td>
<td style="vertical-align: top;">
</td>
MC_YAWRATE_K (FLOAT)
<td style="vertical-align: top;">
<p>
Yaw rate controller gain
</p>
<p>
<strong>Comment:</strong> Global gain of the controller. This gain scales the P, I and D terms of the controller: output = MC_YAWRATE_K * (MC_YAWRATE_P * error + MC_YAWRATE_I * error_integral + MC_YAWRATE_D * error_derivative) Set MC_YAWRATE_P=1 to implement a PID in the ideal form. Set MC_YAWRATE_K=1 to implement a PID in the parallel form.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 5.0 (0.0005)
</td>
<td style="vertical-align: top;">
1.0
</td>
<td style="vertical-align: top;">
</td>
MC_YAWRATE_P (FLOAT)
<td style="vertical-align: top;">
<p>
Yaw rate P gain
</p>
<p>
<strong>Comment:</strong> Yaw rate proportional gain, i.e. control output for angular speed error 1 rad/s.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 0.6 (0.01)
</td>
<td style="vertical-align: top;">
0.2
</td>
<td style="vertical-align: top;">
</td>
MC_YR_INT_LIM (FLOAT)
<td style="vertical-align: top;">
<p>
Yaw rate integrator limit
</p>
<p>
<strong>Comment:</strong> Yaw rate integrator limit. Can be set to increase the amount of integrator available to counteract disturbances or reduced to improve settling time after large yaw moment trim changes.
</p>
</td>
<td style="vertical-align: top;">
0.0 > ? (0.01)
</td>
<td style="vertical-align: top;">
0.30
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Minimum motor rise time (slew rate limit)
</p>
<p>
<strong>Comment:</strong> Minimum time allowed for the motor input signal to pass through a range of 1000 PWM units. A value x means that the motor signal can only go from 1000 to 2000 PWM in maximum x seconds. Zero means that slew rate limiting is disabled.
</p>
</td>
<td style="vertical-align: top;">
0.0 > ?
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
s/(1000*PWM)
</td>
PWM_AUX_DIS1 (INT32)
<td style="vertical-align: top;">
<p>
Set the disarmed PWM for the auxiliary 1 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_AUX_DISARMED will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_DIS2 (INT32)
<td style="vertical-align: top;">
<p>
Set the disarmed PWM for the auxiliary 2 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_AUX_DISARMED will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_DIS3 (INT32)
<td style="vertical-align: top;">
<p>
Set the disarmed PWM for the auxiliary 3 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_AUX_DISARMED will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_DIS4 (INT32)
<td style="vertical-align: top;">
<p>
Set the disarmed PWM for the auxiliary 4 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_AUX_DISARMED will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_DIS5 (INT32)
<td style="vertical-align: top;">
<p>
Set the disarmed PWM for the auxiliary 5 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_AUX_DISARMED will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_DIS6 (INT32)
<td style="vertical-align: top;">
<p>
Set the disarmed PWM for the auxiliary 6 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_AUX_DISARMED will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_DIS7 (INT32)
<td style="vertical-align: top;">
<p>
Set the disarmed PWM for the auxiliary 7 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_AUX_DISARMED will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_DIS8 (INT32)
<td style="vertical-align: top;">
<p>
Set the disarmed PWM for the auxiliary 8 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_AUX_DISARMED will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_DISARMED (INT32)
<td style="vertical-align: top;">
<p>
Set the disarmed PWM for auxiliary outputs
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if not armed. The main use of this parameter is to silence ESCs when they are disarmed.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 2200
</td>
<td style="vertical-align: top;">
1500
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_FAIL1 (INT32)
<td style="vertical-align: top;">
<p>
Set the failsafe PWM for the auxiliary 1 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if in failsafe mode. When set to -1 the value is set automatically depending if the actuator is a motor (900us) or a servo (1500us)
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_FAIL2 (INT32)
<td style="vertical-align: top;">
<p>
Set the failsafe PWM for the auxiliary 2 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if in failsafe mode. When set to -1 the value is set automatically depending if the actuator is a motor (900us) or a servo (1500us)
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_FAIL3 (INT32)
<td style="vertical-align: top;">
<p>
Set the failsafe PWM for the auxiliary 3 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if in failsafe mode. When set to -1 the value is set automatically depending if the actuator is a motor (900us) or a servo (1500us)
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_FAIL4 (INT32)
<td style="vertical-align: top;">
<p>
Set the failsafe PWM for the auxiliary 4 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if in failsafe mode. When set to -1 the value is set automatically depending if the actuator is a motor (900us) or a servo (1500us)
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_FAIL5 (INT32)
<td style="vertical-align: top;">
<p>
Set the failsafe PWM for the auxiliary 5 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if in failsafe mode. When set to -1 the value is set automatically depending if the actuator is a motor (900us) or a servo (1500us)
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_FAIL6 (INT32)
<td style="vertical-align: top;">
<p>
Set the failsafe PWM for the auxiliary 6 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if in failsafe mode. When set to -1 the value is set automatically depending if the actuator is a motor (900us) or a servo (1500us)
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_FAIL7 (INT32)
<td style="vertical-align: top;">
<p>
Set the failsafe PWM for the auxiliary 7 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if in failsafe mode. When set to -1 the value is set automatically depending if the actuator is a motor (900us) or a servo (1500us)
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_FAIL8 (INT32)
<td style="vertical-align: top;">
<p>
Set the failsafe PWM for the auxiliary 8 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if in failsafe mode. When set to -1 the value is set automatically depending if the actuator is a motor (900us) or a servo (1500us)
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_MAX (INT32)
<td style="vertical-align: top;">
<p>
Set the maximum PWM for the auxiliary outputs
</p>
<p>
<strong>Comment:</strong> Set to 2000 for industry default or 2100 to increase servo travel.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
1600 > 2200
</td>
<td style="vertical-align: top;">
2000
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_MAX1 (INT32)
<td style="vertical-align: top;">
<p>
Set the max PWM value for the auxiliary 1 output
</p>
<p>
<strong>Comment:</strong> This is the maximum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_AUX_MAX will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_MAX2 (INT32)
<td style="vertical-align: top;">
<p>
Set the max PWM value for the auxiliary 2 output
</p>
<p>
<strong>Comment:</strong> This is the maximum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_AUX_MAX will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_MAX3 (INT32)
<td style="vertical-align: top;">
<p>
Set the max PWM value for the auxiliary 3 output
</p>
<p>
<strong>Comment:</strong> This is the maximum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_AUX_MAX will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_MAX4 (INT32)
<td style="vertical-align: top;">
<p>
Set the max PWM value for the auxiliary 4 output
</p>
<p>
<strong>Comment:</strong> This is the maximum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_AUX_MAX will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_MAX5 (INT32)
<td style="vertical-align: top;">
<p>
Set the max PWM value for the auxiliary 5 output
</p>
<p>
<strong>Comment:</strong> This is the maximum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_AUX_MAX will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_MAX6 (INT32)
<td style="vertical-align: top;">
<p>
Set the max PWM value for the auxiliary 6 output
</p>
<p>
<strong>Comment:</strong> This is the maximum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_AUX_MAX will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_MAX7 (INT32)
<td style="vertical-align: top;">
<p>
Set the max PWM value for the auxiliary 7 output
</p>
<p>
<strong>Comment:</strong> This is the maximum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_AUX_MAX will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_MAX8 (INT32)
<td style="vertical-align: top;">
<p>
Set the max PWM value for the auxiliary 8 output
</p>
<p>
<strong>Comment:</strong> This is the maximum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_AUX_MAX will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_MIN (INT32)
<td style="vertical-align: top;">
<p>
Set the minimum PWM for the auxiliary outputs
</p>
<p>
<strong>Comment:</strong> Set to 1000 for industry default or 900 to increase servo travel.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
800 > 1400
</td>
<td style="vertical-align: top;">
1000
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_MIN1 (INT32)
<td style="vertical-align: top;">
<p>
Set the min PWM value for the auxiliary 1 output
</p>
<p>
<strong>Comment:</strong> This is the minimum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_AUX_MIN will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_MIN2 (INT32)
<td style="vertical-align: top;">
<p>
Set the min PWM value for the auxiliary 2 output
</p>
<p>
<strong>Comment:</strong> This is the minimum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_AUX_MIN will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_MIN3 (INT32)
<td style="vertical-align: top;">
<p>
Set the min PWM value for the auxiliary 3 output
</p>
<p>
<strong>Comment:</strong> This is the minimum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_AUX_MIN will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_MIN4 (INT32)
<td style="vertical-align: top;">
<p>
Set the min PWM value for the auxiliary 4 output
</p>
<p>
<strong>Comment:</strong> This is the minimum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_AUX_MIN will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_MIN5 (INT32)
<td style="vertical-align: top;">
<p>
Set the min PWM value for the auxiliary 5 output
</p>
<p>
<strong>Comment:</strong> This is the minimum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_AUX_MIN will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_MIN6 (INT32)
<td style="vertical-align: top;">
<p>
Set the min PWM value for the auxiliary 6 output
</p>
<p>
<strong>Comment:</strong> This is the minimum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_AUX_MIN will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_MIN7 (INT32)
<td style="vertical-align: top;">
<p>
Set the min PWM value for the auxiliary 7 output
</p>
<p>
<strong>Comment:</strong> This is the minimum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_AUX_MIN will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_MIN8 (INT32)
<td style="vertical-align: top;">
<p>
Set the min PWM value for the auxiliary 8 output
</p>
<p>
<strong>Comment:</strong> This is the minimum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_AUX_MIN will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_AUX_RATE (INT32)
<td style="vertical-align: top;">
<p>
Set the PWM output frequency for the auxiliary outputs
</p>
<p>
<strong>Comment:</strong> Set to 400 for industry default or 1000 for high frequency ESCs. Set to 0 for Oneshot125.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2000
</td>
<td style="vertical-align: top;">
50
</td>
<td style="vertical-align: top;">
Hz
</td>
PWM_AUX_REV1 (INT32)
<td style="vertical-align: top;">
<p>
Invert direction of auxiliary output channel 1
</p>
<p>
<strong>Comment:</strong> Enable to invert the channel. Warning: Use this parameter when connected to a servo only. For a brushless motor, invert manually two phases to reverse the direction.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
PWM_AUX_REV2 (INT32)
<td style="vertical-align: top;">
<p>
Invert direction of auxiliary output channel 2
</p>
<p>
<strong>Comment:</strong> Enable to invert the channel. Warning: Use this parameter when connected to a servo only. For a brushless motor, invert manually two phases to reverse the direction.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
PWM_AUX_REV3 (INT32)
<td style="vertical-align: top;">
<p>
Invert direction of auxiliary output channel 3
</p>
<p>
<strong>Comment:</strong> Enable to invert the channel. Warning: Use this parameter when connected to a servo only. For a brushless motor, invert manually two phases to reverse the direction.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
PWM_AUX_REV4 (INT32)
<td style="vertical-align: top;">
<p>
Invert direction of auxiliary output channel 4
</p>
<p>
<strong>Comment:</strong> Enable to invert the channel. Warning: Use this parameter when connected to a servo only. For a brushless motor, invert manually two phases to reverse the direction.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
PWM_AUX_REV5 (INT32)
<td style="vertical-align: top;">
<p>
Invert direction of auxiliary output channel 5
</p>
<p>
<strong>Comment:</strong> Enable to invert the channel. Warning: Use this parameter when connected to a servo only. For a brushless motor, invert manually two phases to reverse the direction.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
PWM_AUX_REV6 (INT32)
<td style="vertical-align: top;">
<p>
Invert direction of auxiliary output channel 6
</p>
<p>
<strong>Comment:</strong> Enable to invert the channel. Warning: Use this parameter when connected to a servo only. For a brushless motor, invert manually two phases to reverse the direction.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
PWM_AUX_REV7 (INT32)
<td style="vertical-align: top;">
<p>
Invert direction of auxiliary output channel 7
</p>
<p>
<strong>Comment:</strong> Enable to invert the channel. Warning: Use this parameter when connected to a servo only. For a brushless motor, invert manually two phases to reverse the direction.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
PWM_AUX_REV8 (INT32)
<td style="vertical-align: top;">
<p>
Invert direction of auxiliary output channel 8
</p>
<p>
<strong>Comment:</strong> Enable to invert the channel. Warning: Use this parameter when connected to a servo only. For a brushless motor, invert manually two phases to reverse the direction.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
PWM_AUX_TRIM1 (FLOAT)
<td style="vertical-align: top;">
<p>
Trim value for auxiliary output channel 1
</p>
<p>
<strong>Comment:</strong> Set to normalized offset
</p>
</td>
<td style="vertical-align: top;">
-0.2 > 0.2
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
PWM_AUX_TRIM2 (FLOAT)
<td style="vertical-align: top;">
<p>
Trim value for auxiliary output channel 2
</p>
<p>
<strong>Comment:</strong> Set to normalized offset
</p>
</td>
<td style="vertical-align: top;">
-0.2 > 0.2
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
PWM_AUX_TRIM3 (FLOAT)
<td style="vertical-align: top;">
<p>
Trim value for auxiliary output channel 3
</p>
<p>
<strong>Comment:</strong> Set to normalized offset
</p>
</td>
<td style="vertical-align: top;">
-0.2 > 0.2
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
PWM_AUX_TRIM4 (FLOAT)
<td style="vertical-align: top;">
<p>
Trim value for auxiliary output channel 4
</p>
<p>
<strong>Comment:</strong> Set to normalized offset
</p>
</td>
<td style="vertical-align: top;">
-0.2 > 0.2
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
PWM_AUX_TRIM5 (FLOAT)
<td style="vertical-align: top;">
<p>
Trim value for auxiliary output channel 5
</p>
<p>
<strong>Comment:</strong> Set to normalized offset
</p>
</td>
<td style="vertical-align: top;">
-0.2 > 0.2
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
PWM_AUX_TRIM6 (FLOAT)
<td style="vertical-align: top;">
<p>
Trim value for auxiliary output channel 6
</p>
<p>
<strong>Comment:</strong> Set to normalized offset
</p>
</td>
<td style="vertical-align: top;">
-0.2 > 0.2
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
PWM_AUX_TRIM7 (FLOAT)
<td style="vertical-align: top;">
<p>
Trim value for auxiliary output channel 7
</p>
<p>
<strong>Comment:</strong> Set to normalized offset
</p>
</td>
<td style="vertical-align: top;">
-0.2 > 0.2
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
PWM_AUX_TRIM8 (FLOAT)
<td style="vertical-align: top;">
<p>
Trim value for auxiliary output channel 8
</p>
<p>
<strong>Comment:</strong> Set to normalized offset
</p>
</td>
<td style="vertical-align: top;">
-0.2 > 0.2
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
PWM_DISARMED (INT32)
<td style="vertical-align: top;">
<p>
Set the disarmed PWM for the main outputs
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if not armed. The main use of this parameter is to silence ESCs when they are disarmed.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 2200
</td>
<td style="vertical-align: top;">
900
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_DIS1 (INT32)
<td style="vertical-align: top;">
<p>
Set the disarmed PWM for the main 1 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_DISARMED will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_DIS2 (INT32)
<td style="vertical-align: top;">
<p>
Set the disarmed PWM for the main 2 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_DISARMED will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_DIS3 (INT32)
<td style="vertical-align: top;">
<p>
Set the disarmed PWM for the main 3 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_DISARMED will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_DIS4 (INT32)
<td style="vertical-align: top;">
<p>
Set the disarmed PWM for the main 4 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_DISARMED will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_DIS5 (INT32)
<td style="vertical-align: top;">
<p>
Set the disarmed PWM for the main 5 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_DISARMED will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_DIS6 (INT32)
<td style="vertical-align: top;">
<p>
Set the disarmed PWM for the main 6 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_DISARMED will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_DIS7 (INT32)
<td style="vertical-align: top;">
<p>
Set the disarmed PWM for the main 7 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_DISARMED will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_DIS8 (INT32)
<td style="vertical-align: top;">
<p>
Set the disarmed PWM for the main 8 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_DISARMED will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_FAIL1 (INT32)
<td style="vertical-align: top;">
<p>
Set the failsafe PWM for the main 1 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if in failsafe mode. When set to -1 the value is set automatically depending if the actuator is a motor (900us) or a servo (1500us)
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_FAIL2 (INT32)
<td style="vertical-align: top;">
<p>
Set the failsafe PWM for the main 2 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if in failsafe mode. When set to -1 the value is set automatically depending if the actuator is a motor (900us) or a servo (1500us)
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_FAIL3 (INT32)
<td style="vertical-align: top;">
<p>
Set the failsafe PWM for the main 3 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if in failsafe mode. When set to -1 the value is set automatically depending if the actuator is a motor (900us) or a servo (1500us)
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_FAIL4 (INT32)
<td style="vertical-align: top;">
<p>
Set the failsafe PWM for the main 4 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if in failsafe mode. When set to -1 the value is set automatically depending if the actuator is a motor (900us) or a servo (1500us)
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_FAIL5 (INT32)
<td style="vertical-align: top;">
<p>
Set the failsafe PWM for the main 5 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if in failsafe mode. When set to -1 the value is set automatically depending if the actuator is a motor (900us) or a servo (1500us)
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_FAIL6 (INT32)
<td style="vertical-align: top;">
<p>
Set the failsafe PWM for the main 6 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if in failsafe mode. When set to -1 the value is set automatically depending if the actuator is a motor (900us) or a servo (1500us)
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_FAIL7 (INT32)
<td style="vertical-align: top;">
<p>
Set the failsafe PWM for the main 7 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if in failsafe mode. When set to -1 the value is set automatically depending if the actuator is a motor (900us) or a servo (1500us)
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_FAIL8 (INT32)
<td style="vertical-align: top;">
<p>
Set the failsafe PWM for the main 8 output
</p>
<p>
<strong>Comment:</strong> This is the PWM pulse the autopilot is outputting if in failsafe mode. When set to -1 the value is set automatically depending if the actuator is a motor (900us) or a servo (1500us)
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_MAX1 (INT32)
<td style="vertical-align: top;">
<p>
Set the max PWM value for the main 1 output
</p>
<p>
<strong>Comment:</strong> This is the maximum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_MAX will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_MAX2 (INT32)
<td style="vertical-align: top;">
<p>
Set the max PWM value for the main 2 output
</p>
<p>
<strong>Comment:</strong> This is the maximum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_MAX will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_MAX3 (INT32)
<td style="vertical-align: top;">
<p>
Set the max PWM value for the main 3 output
</p>
<p>
<strong>Comment:</strong> This is the maximum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_MAX will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_MAX4 (INT32)
<td style="vertical-align: top;">
<p>
Set the max PWM value for the main 4 output
</p>
<p>
<strong>Comment:</strong> This is the maximum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_MAX will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_MAX5 (INT32)
<td style="vertical-align: top;">
<p>
Set the max PWM value for the main 5 output
</p>
<p>
<strong>Comment:</strong> This is the maximum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_MAX will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_MAX6 (INT32)
<td style="vertical-align: top;">
<p>
Set the max PWM value for the main 6 output
</p>
<p>
<strong>Comment:</strong> This is the maximum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_MAX will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_MAX7 (INT32)
<td style="vertical-align: top;">
<p>
Set the max PWM value for the main 7 output
</p>
<p>
<strong>Comment:</strong> This is the maximum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_MAX will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_MAX8 (INT32)
<td style="vertical-align: top;">
<p>
Set the max PWM value for the main 8 output
</p>
<p>
<strong>Comment:</strong> This is the maximum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_MAX will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_MIN1 (INT32)
<td style="vertical-align: top;">
<p>
Set the min PWM value for the main 1 output
</p>
<p>
<strong>Comment:</strong> This is the minimum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_MIN will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_MIN2 (INT32)
<td style="vertical-align: top;">
<p>
Set the min PWM value for the main 2 output
</p>
<p>
<strong>Comment:</strong> This is the minimum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_MIN will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_MIN3 (INT32)
<td style="vertical-align: top;">
<p>
Set the min PWM value for the main 3 output
</p>
<p>
<strong>Comment:</strong> This is the minimum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_MIN will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_MIN4 (INT32)
<td style="vertical-align: top;">
<p>
Set the min PWM value for the main 4 output
</p>
<p>
<strong>Comment:</strong> This is the minimum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_MIN will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_MIN5 (INT32)
<td style="vertical-align: top;">
<p>
Set the min PWM value for the main 5 output
</p>
<p>
<strong>Comment:</strong> This is the minimum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_MIN will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_MIN6 (INT32)
<td style="vertical-align: top;">
<p>
Set the min PWM value for the main 6 output
</p>
<p>
<strong>Comment:</strong> This is the minimum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_MIN will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_MIN7 (INT32)
<td style="vertical-align: top;">
<p>
Set the min PWM value for the main 7 output
</p>
<p>
<strong>Comment:</strong> This is the minimum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_MIN will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_MIN8 (INT32)
<td style="vertical-align: top;">
<p>
Set the min PWM value for the main 8 output
</p>
<p>
<strong>Comment:</strong> This is the minimum PWM pulse the autopilot is allowed to output. When set to -1 the value for PWM_MIN will be used
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2200
</td>
<td style="vertical-align: top;">
-1
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MAIN_REV1 (INT32)
<td style="vertical-align: top;">
<p>
Invert direction of main output channel 1
</p>
<p>
<strong>Comment:</strong> Enable to invert the channel. Warning: Use this parameter when connected to a servo only. For a brushless motor, invert manually two phases to reverse the direction.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
PWM_MAIN_REV2 (INT32)
<td style="vertical-align: top;">
<p>
Invert direction of main output channel 2
</p>
<p>
<strong>Comment:</strong> Enable to invert the channel. Warning: Use this parameter when connected to a servo only. For a brushless motor, invert manually two phases to reverse the direction.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
PWM_MAIN_REV3 (INT32)
<td style="vertical-align: top;">
<p>
Invert direction of main output channel 3
</p>
<p>
<strong>Comment:</strong> Enable to invert the channel. Warning: Use this parameter when connected to a servo only. For a brushless motor, invert manually two phases to reverse the direction.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
PWM_MAIN_REV4 (INT32)
<td style="vertical-align: top;">
<p>
Invert direction of main output channel 4
</p>
<p>
<strong>Comment:</strong> Enable to invert the channel. Warning: Use this parameter when connected to a servo only. For a brushless motor, invert manually two phases to reverse the direction.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
PWM_MAIN_REV5 (INT32)
<td style="vertical-align: top;">
<p>
Invert direction of main output channel 5
</p>
<p>
<strong>Comment:</strong> Enable to invert the channel. Warning: Use this parameter when connected to a servo only. For a brushless motor, invert manually two phases to reverse the direction.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
PWM_MAIN_REV6 (INT32)
<td style="vertical-align: top;">
<p>
Invert direction of main output channel 6
</p>
<p>
<strong>Comment:</strong> Enable to invert the channel. Warning: Use this parameter when connected to a servo only. For a brushless motor, invert manually two phases to reverse the direction.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
PWM_MAIN_REV7 (INT32)
<td style="vertical-align: top;">
<p>
Invert direction of main output channel 7
</p>
<p>
<strong>Comment:</strong> Enable to invert the channel. Warning: Use this parameter when connected to a servo only. For a brushless motor, invert manually two phases to reverse the direction.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
PWM_MAIN_REV8 (INT32)
<td style="vertical-align: top;">
<p>
Invert direction of main output channel 8
</p>
<p>
<strong>Comment:</strong> Enable to invert the channel. Warning: Use this parameter when connected to a servo only. For a brushless motor, invert manually two phases to reverse the direction.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
PWM_MAIN_TRIM1 (FLOAT)
<td style="vertical-align: top;">
<p>
Trim value for main output channel 1
</p>
<p>
<strong>Comment:</strong> Set to normalized offset
</p>
</td>
<td style="vertical-align: top;">
-0.2 > 0.2
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
PWM_MAIN_TRIM2 (FLOAT)
<td style="vertical-align: top;">
<p>
Trim value for main output channel 2
</p>
<p>
<strong>Comment:</strong> Set to normalized offset
</p>
</td>
<td style="vertical-align: top;">
-0.2 > 0.2
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
PWM_MAIN_TRIM3 (FLOAT)
<td style="vertical-align: top;">
<p>
Trim value for main output channel 3
</p>
<p>
<strong>Comment:</strong> Set to normalized offset
</p>
</td>
<td style="vertical-align: top;">
-0.2 > 0.2
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
PWM_MAIN_TRIM4 (FLOAT)
<td style="vertical-align: top;">
<p>
Trim value for main output channel 4
</p>
<p>
<strong>Comment:</strong> Set to normalized offset
</p>
</td>
<td style="vertical-align: top;">
-0.2 > 0.2
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
PWM_MAIN_TRIM5 (FLOAT)
<td style="vertical-align: top;">
<p>
Trim value for main output channel 5
</p>
<p>
<strong>Comment:</strong> Set to normalized offset
</p>
</td>
<td style="vertical-align: top;">
-0.2 > 0.2
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
PWM_MAIN_TRIM6 (FLOAT)
<td style="vertical-align: top;">
<p>
Trim value for main output channel 6
</p>
<p>
<strong>Comment:</strong> Set to normalized offset
</p>
</td>
<td style="vertical-align: top;">
-0.2 > 0.2
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
PWM_MAIN_TRIM7 (FLOAT)
<td style="vertical-align: top;">
<p>
Trim value for main output channel 7
</p>
<p>
<strong>Comment:</strong> Set to normalized offset
</p>
</td>
<td style="vertical-align: top;">
-0.2 > 0.2
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
PWM_MAIN_TRIM8 (FLOAT)
<td style="vertical-align: top;">
<p>
Trim value for main output channel 8
</p>
<p>
<strong>Comment:</strong> Set to normalized offset
</p>
</td>
<td style="vertical-align: top;">
-0.2 > 0.2
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
PWM_MAX (INT32)
<td style="vertical-align: top;">
<p>
Set the maximum PWM for the main outputs
</p>
<p>
<strong>Comment:</strong> Set to 2000 for industry default or 2100 to increase servo travel.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
1600 > 2200
</td>
<td style="vertical-align: top;">
2000
</td>
<td style="vertical-align: top;">
us
</td>
PWM_MIN (INT32)
<td style="vertical-align: top;">
<p>
Set the minimum PWM for the main outputs
</p>
<p>
<strong>Comment:</strong> Set to 1000 for industry default or 900 to increase servo travel.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
800 > 1400
</td>
<td style="vertical-align: top;">
1000
</td>
<td style="vertical-align: top;">
us
</td>
PWM_RATE (INT32)
<td style="vertical-align: top;">
<p>
Set the PWM output frequency for the main outputs
</p>
<p>
<strong>Comment:</strong> Set to 400 for industry default or 1000 for high frequency ESCs. Set to 0 for Oneshot125.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
-1 > 2000
</td>
<td style="vertical-align: top;">
400
</td>
<td style="vertical-align: top;">
Hz
</td>
PWM_SBUS_MODE (INT32)
<td style="vertical-align: top;">
<p>
S.BUS out
</p>
<p>
<strong>Comment:</strong> Set to 1 to enable S.BUS version 1 output instead of RSSI.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
THR_MDL_FAC (FLOAT)
<td style="vertical-align: top;">
<p>
Thrust to motor control signal model parameter
</p>
<p>
<strong>Comment:</strong> Parameter used to model the nonlinear relationship between motor control signal (e.g. PWM) and static thrust. The model is: rel_thrust = factor * rel_signal^2 + (1-factor) * rel_signal, where rel_thrust is the normalized thrust between 0 and 1, and rel_signal is the relative motor control signal between 0 and 1.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Ground drag property
</p>
<p>
<strong>Comment:</strong> This parameter encodes the ground drag coefficient and the corresponding decrease in wind speed from the plane altitude to ground altitude.
</p>
</td>
<td style="vertical-align: top;">
0.001 > 0.1
</td>
<td style="vertical-align: top;">
0.03
</td>
<td style="vertical-align: top;">
</td>
BD_OBJ_CD (FLOAT)
<td style="vertical-align: top;">
<p>
Payload drag coefficient of the dropped object
</p>
<p>
<strong>Comment:</strong> The drag coefficient (cd) is the typical drag constant for air. It is in general object specific, but the closest primitive shape to the actual object should give good results: http://en.wikipedia.org/wiki/Drag_coefficient
</p>
</td>
<td style="vertical-align: top;">
0.08 > 1.5
</td>
<td style="vertical-align: top;">
0.1
</td>
<td style="vertical-align: top;">
</td>
BD_OBJ_MASS (FLOAT)
<td style="vertical-align: top;">
<p>
Payload mass
</p>
<p>
<strong>Comment:</strong> A typical small toy ball: 0.025 kg OBC water bottle: 0.6 kg
</p>
</td>
<td style="vertical-align: top;">
0.001 > 5.0
</td>
<td style="vertical-align: top;">
0.6
</td>
<td style="vertical-align: top;">
kg
</td>
BD_OBJ_SURFACE (FLOAT)
<td style="vertical-align: top;">
<p>
Payload front surface area
</p>
<p>
<strong>Comment:</strong> A typical small toy ball: (0.045 * 0.045) / 4.0 * pi = 0.001590 m^2 OBC water bottle: (0.063 * 0.063) / 4.0 * pi = 0.003117 m^2
</p>
</td>
<td style="vertical-align: top;">
0.001 > 0.5
</td>
<td style="vertical-align: top;">
0.00311724531
</td>
<td style="vertical-align: top;">
m^2
</td>
BD_PRECISION (FLOAT)
<td style="vertical-align: top;">
<p>
Drop precision
</p>
<p>
<strong>Comment:</strong> If the system is closer than this distance on passing over the drop position, it will release the payload. This is a safeguard to prevent a drop out of the required accuracy.
</p>
</td>
<td style="vertical-align: top;">
1.0 > 80.0
</td>
<td style="vertical-align: top;">
30.0
</td>
<td style="vertical-align: top;">
m
</td>
BD_TURNRADIUS (FLOAT)
<td style="vertical-align: top;">
<p>
Plane turn radius
</p>
<p>
<strong>Comment:</strong> The planes known minimal turn radius - use a higher value to make the plane maneuver more distant from the actual drop position. This is to ensure the wings are level during the drop.
</p>
</td>
<td style="vertical-align: top;">
30.0 > 500.0
</td>
<td style="vertical-align: top;">
120.0
</td>
<td style="vertical-align: top;">
m
</td>
<td style="vertical-align: top;">
<p>
Landing Target Timeout
</p>
<p>
<strong>Comment:</strong> Time after which the landing target is considered lost without any new measurements.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 50 (0.5)
</td>
<td style="vertical-align: top;">
5.0
</td>
<td style="vertical-align: top;">
s
</td>
PLD_FAPPR_ALT (FLOAT)
<td style="vertical-align: top;">
<p>
Final approach altitude
</p>
<p>
<strong>Comment:</strong> Allow final approach (without horizontal positioning) if losing landing target closer than this to the ground.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 10 (0.1)
</td>
<td style="vertical-align: top;">
0.1
</td>
<td style="vertical-align: top;">
m
</td>
<td style="vertical-align: top;">
<p>
Maximum number of search attempts
</p>
<p>
<strong>Comment:</strong> Maximum number of times to seach for the landing target if it is lost during the precision landing.
</p>
</td>
<td style="vertical-align: top;">
0 > 100
</td>
<td style="vertical-align: top;">
3
</td>
<td style="vertical-align: top;">
</td>
PLD_SRCH_ALT (FLOAT)
<td style="vertical-align: top;">
<p>
Search altitude
</p>
<p>
<strong>Comment:</strong> Altitude above home to which to climb when searching for the landing target.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 100 (0.1)
</td>
<td style="vertical-align: top;">
10.0
</td>
<td style="vertical-align: top;">
m
</td>
PLD_SRCH_TOUT (FLOAT)
<td style="vertical-align: top;">
<p>
Search timeout
</p>
<p>
<strong>Comment:</strong> Time allowed to search for the landing target before falling back to normal landing.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 100 (0.1)
</td>
<td style="vertical-align: top;">
10.0
</td>
<td style="vertical-align: top;">
s
</td>
<td style="vertical-align: top;">
<p>
RC channel 10 dead zone
</p>
<p>
<strong>Comment:</strong> The +- range of this value around the trim value will be considered as zero.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 100.0
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
RC10_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 10 maximum
</p>
<p>
<strong>Comment:</strong> Maximum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
1500.0 > 2200.0
</td>
<td style="vertical-align: top;">
2000
</td>
<td style="vertical-align: top;">
us
</td>
RC10_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 10 minimum
</p>
<p>
<strong>Comment:</strong> Minimum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
800.0 > 1500.0
</td>
<td style="vertical-align: top;">
1000
</td>
<td style="vertical-align: top;">
us
</td>
<td style="vertical-align: top;">
<p>
RC channel 10 trim
</p>
<p>
<strong>Comment:</strong> Mid point value (has to be set to the same as min for throttle channel).
</p>
</td>
<td style="vertical-align: top;">
800.0 > 2200.0
</td>
<td style="vertical-align: top;">
1500
</td>
<td style="vertical-align: top;">
us
</td>
RC11_DZ (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 11 dead zone
</p>
<p>
<strong>Comment:</strong> The +- range of this value around the trim value will be considered as zero.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 100.0
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
RC11_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 11 maximum
</p>
<p>
<strong>Comment:</strong> Maximum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
1500.0 > 2200.0
</td>
<td style="vertical-align: top;">
2000
</td>
<td style="vertical-align: top;">
us
</td>
RC11_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 11 minimum
</p>
<p>
<strong>Comment:</strong> Minimum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
800.0 > 1500.0
</td>
<td style="vertical-align: top;">
1000
</td>
<td style="vertical-align: top;">
us
</td>
<td style="vertical-align: top;">
<p>
RC channel 11 trim
</p>
<p>
<strong>Comment:</strong> Mid point value (has to be set to the same as min for throttle channel).
</p>
</td>
<td style="vertical-align: top;">
800.0 > 2200.0
</td>
<td style="vertical-align: top;">
1500
</td>
<td style="vertical-align: top;">
us
</td>
RC12_DZ (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 12 dead zone
</p>
<p>
<strong>Comment:</strong> The +- range of this value around the trim value will be considered as zero.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 100.0
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
RC12_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 12 maximum
</p>
<p>
<strong>Comment:</strong> Maximum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
1500.0 > 2200.0
</td>
<td style="vertical-align: top;">
2000
</td>
<td style="vertical-align: top;">
us
</td>
RC12_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 12 minimum
</p>
<p>
<strong>Comment:</strong> Minimum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
800.0 > 1500.0
</td>
<td style="vertical-align: top;">
1000
</td>
<td style="vertical-align: top;">
us
</td>
<td style="vertical-align: top;">
<p>
RC channel 12 trim
</p>
<p>
<strong>Comment:</strong> Mid point value (has to be set to the same as min for throttle channel).
</p>
</td>
<td style="vertical-align: top;">
800.0 > 2200.0
</td>
<td style="vertical-align: top;">
1500
</td>
<td style="vertical-align: top;">
us
</td>
RC13_DZ (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 13 dead zone
</p>
<p>
<strong>Comment:</strong> The +- range of this value around the trim value will be considered as zero.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 100.0
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
RC13_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 13 maximum
</p>
<p>
<strong>Comment:</strong> Maximum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
1500.0 > 2200.0
</td>
<td style="vertical-align: top;">
2000
</td>
<td style="vertical-align: top;">
us
</td>
RC13_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 13 minimum
</p>
<p>
<strong>Comment:</strong> Minimum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
800.0 > 1500.0
</td>
<td style="vertical-align: top;">
1000
</td>
<td style="vertical-align: top;">
us
</td>
<td style="vertical-align: top;">
<p>
RC channel 13 trim
</p>
<p>
<strong>Comment:</strong> Mid point value (has to be set to the same as min for throttle channel).
</p>
</td>
<td style="vertical-align: top;">
800.0 > 2200.0
</td>
<td style="vertical-align: top;">
1500
</td>
<td style="vertical-align: top;">
us
</td>
RC14_DZ (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 14 dead zone
</p>
<p>
<strong>Comment:</strong> The +- range of this value around the trim value will be considered as zero.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 100.0
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
RC14_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 14 maximum
</p>
<p>
<strong>Comment:</strong> Maximum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
1500.0 > 2200.0
</td>
<td style="vertical-align: top;">
2000
</td>
<td style="vertical-align: top;">
us
</td>
RC14_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 14 minimum
</p>
<p>
<strong>Comment:</strong> Minimum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
800.0 > 1500.0
</td>
<td style="vertical-align: top;">
1000
</td>
<td style="vertical-align: top;">
us
</td>
<td style="vertical-align: top;">
<p>
RC channel 14 trim
</p>
<p>
<strong>Comment:</strong> Mid point value (has to be set to the same as min for throttle channel).
</p>
</td>
<td style="vertical-align: top;">
800.0 > 2200.0
</td>
<td style="vertical-align: top;">
1500
</td>
<td style="vertical-align: top;">
us
</td>
RC15_DZ (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 15 dead zone
</p>
<p>
<strong>Comment:</strong> The +- range of this value around the trim value will be considered as zero.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 100.0
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
RC15_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 15 maximum
</p>
<p>
<strong>Comment:</strong> Maximum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
1500.0 > 2200.0
</td>
<td style="vertical-align: top;">
2000
</td>
<td style="vertical-align: top;">
us
</td>
RC15_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 15 minimum
</p>
<p>
<strong>Comment:</strong> Minimum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
800.0 > 1500.0
</td>
<td style="vertical-align: top;">
1000
</td>
<td style="vertical-align: top;">
us
</td>
<td style="vertical-align: top;">
<p>
RC channel 15 trim
</p>
<p>
<strong>Comment:</strong> Mid point value (has to be set to the same as min for throttle channel).
</p>
</td>
<td style="vertical-align: top;">
800.0 > 2200.0
</td>
<td style="vertical-align: top;">
1500
</td>
<td style="vertical-align: top;">
us
</td>
RC16_DZ (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 16 dead zone
</p>
<p>
<strong>Comment:</strong> The +- range of this value around the trim value will be considered as zero.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 100.0
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
RC16_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 16 maximum
</p>
<p>
<strong>Comment:</strong> Maximum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
1500.0 > 2200.0
</td>
<td style="vertical-align: top;">
2000
</td>
<td style="vertical-align: top;">
us
</td>
RC16_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 16 minimum
</p>
<p>
<strong>Comment:</strong> Minimum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
800.0 > 1500.0
</td>
<td style="vertical-align: top;">
1000
</td>
<td style="vertical-align: top;">
us
</td>
<td style="vertical-align: top;">
<p>
RC channel 16 trim
</p>
<p>
<strong>Comment:</strong> Mid point value (has to be set to the same as min for throttle channel).
</p>
</td>
<td style="vertical-align: top;">
800.0 > 2200.0
</td>
<td style="vertical-align: top;">
1500
</td>
<td style="vertical-align: top;">
us
</td>
RC17_DZ (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 17 dead zone
</p>
<p>
<strong>Comment:</strong> The +- range of this value around the trim value will be considered as zero.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 100.0
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
RC17_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 17 maximum
</p>
<p>
<strong>Comment:</strong> Maximum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
1500.0 > 2200.0
</td>
<td style="vertical-align: top;">
2000
</td>
<td style="vertical-align: top;">
us
</td>
RC17_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 17 minimum
</p>
<p>
<strong>Comment:</strong> Minimum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
800.0 > 1500.0
</td>
<td style="vertical-align: top;">
1000
</td>
<td style="vertical-align: top;">
us
</td>
<td style="vertical-align: top;">
<p>
RC channel 17 trim
</p>
<p>
<strong>Comment:</strong> Mid point value (has to be set to the same as min for throttle channel).
</p>
</td>
<td style="vertical-align: top;">
800.0 > 2200.0
</td>
<td style="vertical-align: top;">
1500
</td>
<td style="vertical-align: top;">
us
</td>
RC18_DZ (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 18 dead zone
</p>
<p>
<strong>Comment:</strong> The +- range of this value around the trim value will be considered as zero.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 100.0
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
RC18_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 18 maximum
</p>
<p>
<strong>Comment:</strong> Maximum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
1500.0 > 2200.0
</td>
<td style="vertical-align: top;">
2000
</td>
<td style="vertical-align: top;">
us
</td>
RC18_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 18 minimum
</p>
<p>
<strong>Comment:</strong> Minimum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
800.0 > 1500.0
</td>
<td style="vertical-align: top;">
1000
</td>
<td style="vertical-align: top;">
us
</td>
<td style="vertical-align: top;">
<p>
RC channel 18 trim
</p>
<p>
<strong>Comment:</strong> Mid point value (has to be set to the same as min for throttle channel).
</p>
</td>
<td style="vertical-align: top;">
800.0 > 2200.0
</td>
<td style="vertical-align: top;">
1500
</td>
<td style="vertical-align: top;">
us
</td>
RC1_DZ (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 1 dead zone
</p>
<p>
<strong>Comment:</strong> The +- range of this value around the trim value will be considered as zero.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 100.0
</td>
<td style="vertical-align: top;">
10.0
</td>
<td style="vertical-align: top;">
us
</td>
RC1_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 1 maximum
</p>
<p>
<strong>Comment:</strong> Maximum value for RC channel 1
</p>
</td>
<td style="vertical-align: top;">
1500.0 > 2200.0
</td>
<td style="vertical-align: top;">
2000.0
</td>
<td style="vertical-align: top;">
us
</td>
<td style="vertical-align: top;">
<p>
RC channel 1 trim
</p>
<p>
<strong>Comment:</strong> Mid point value (same as min for throttle)
</p>
</td>
<td style="vertical-align: top;">
800.0 > 2200.0
</td>
<td style="vertical-align: top;">
1500.0
</td>
<td style="vertical-align: top;">
us
</td>
RC2_DZ (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 2 dead zone
</p>
<p>
<strong>Comment:</strong> The +- range of this value around the trim value will be considered as zero.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 100.0
</td>
<td style="vertical-align: top;">
10.0
</td>
<td style="vertical-align: top;">
us
</td>
RC2_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 2 maximum
</p>
<p>
<strong>Comment:</strong> Maximum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
1500.0 > 2200.0
</td>
<td style="vertical-align: top;">
2000.0
</td>
<td style="vertical-align: top;">
us
</td>
RC2_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 2 minimum
</p>
<p>
<strong>Comment:</strong> Minimum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
800.0 > 1500.0
</td>
<td style="vertical-align: top;">
1000.0
</td>
<td style="vertical-align: top;">
us
</td>
<td style="vertical-align: top;">
<p>
RC channel 2 trim
</p>
<p>
<strong>Comment:</strong> Mid point value (has to be set to the same as min for throttle channel).
</p>
</td>
<td style="vertical-align: top;">
800.0 > 2200.0
</td>
<td style="vertical-align: top;">
1500.0
</td>
<td style="vertical-align: top;">
us
</td>
RC3_DZ (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 3 dead zone
</p>
<p>
<strong>Comment:</strong> The +- range of this value around the trim value will be considered as zero.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 100.0
</td>
<td style="vertical-align: top;">
10.0
</td>
<td style="vertical-align: top;">
us
</td>
RC3_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 3 maximum
</p>
<p>
<strong>Comment:</strong> Maximum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
1500.0 > 2200.0
</td>
<td style="vertical-align: top;">
2000
</td>
<td style="vertical-align: top;">
us
</td>
RC3_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 3 minimum
</p>
<p>
<strong>Comment:</strong> Minimum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
800.0 > 1500.0
</td>
<td style="vertical-align: top;">
1000
</td>
<td style="vertical-align: top;">
us
</td>
<td style="vertical-align: top;">
<p>
RC channel 3 trim
</p>
<p>
<strong>Comment:</strong> Mid point value (has to be set to the same as min for throttle channel).
</p>
</td>
<td style="vertical-align: top;">
800.0 > 2200.0
</td>
<td style="vertical-align: top;">
1500
</td>
<td style="vertical-align: top;">
us
</td>
RC4_DZ (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 4 dead zone
</p>
<p>
<strong>Comment:</strong> The +- range of this value around the trim value will be considered as zero.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 100.0
</td>
<td style="vertical-align: top;">
10.0
</td>
<td style="vertical-align: top;">
us
</td>
RC4_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 4 maximum
</p>
<p>
<strong>Comment:</strong> Maximum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
1500.0 > 2200.0
</td>
<td style="vertical-align: top;">
2000
</td>
<td style="vertical-align: top;">
us
</td>
RC4_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 4 minimum
</p>
<p>
<strong>Comment:</strong> Minimum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
800.0 > 1500.0
</td>
<td style="vertical-align: top;">
1000
</td>
<td style="vertical-align: top;">
us
</td>
<td style="vertical-align: top;">
<p>
RC channel 4 trim
</p>
<p>
<strong>Comment:</strong> Mid point value (has to be set to the same as min for throttle channel).
</p>
</td>
<td style="vertical-align: top;">
800.0 > 2200.0
</td>
<td style="vertical-align: top;">
1500
</td>
<td style="vertical-align: top;">
us
</td>
RC5_DZ (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 5 dead zone
</p>
<p>
<strong>Comment:</strong> The +- range of this value around the trim value will be considered as zero.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 100.0
</td>
<td style="vertical-align: top;">
10.0
</td>
<td style="vertical-align: top;">
</td>
RC5_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 5 maximum
</p>
<p>
<strong>Comment:</strong> Maximum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
1500.0 > 2200.0
</td>
<td style="vertical-align: top;">
2000
</td>
<td style="vertical-align: top;">
us
</td>
RC5_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 5 minimum
</p>
<p>
<strong>Comment:</strong> Minimum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
800.0 > 1500.0
</td>
<td style="vertical-align: top;">
1000
</td>
<td style="vertical-align: top;">
us
</td>
<td style="vertical-align: top;">
<p>
RC channel 5 trim
</p>
<p>
<strong>Comment:</strong> Mid point value (has to be set to the same as min for throttle channel).
</p>
</td>
<td style="vertical-align: top;">
800.0 > 2200.0
</td>
<td style="vertical-align: top;">
1500
</td>
<td style="vertical-align: top;">
us
</td>
RC6_DZ (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 6 dead zone
</p>
<p>
<strong>Comment:</strong> The +- range of this value around the trim value will be considered as zero.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 100.0
</td>
<td style="vertical-align: top;">
10.0
</td>
<td style="vertical-align: top;">
</td>
RC6_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 6 maximum
</p>
<p>
<strong>Comment:</strong> Maximum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
1500.0 > 2200.0
</td>
<td style="vertical-align: top;">
2000
</td>
<td style="vertical-align: top;">
us
</td>
RC6_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 6 minimum
</p>
<p>
<strong>Comment:</strong> Minimum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
800.0 > 1500.0
</td>
<td style="vertical-align: top;">
1000
</td>
<td style="vertical-align: top;">
us
</td>
<td style="vertical-align: top;">
<p>
RC channel 6 trim
</p>
<p>
<strong>Comment:</strong> Mid point value (has to be set to the same as min for throttle channel).
</p>
</td>
<td style="vertical-align: top;">
800.0 > 2200.0
</td>
<td style="vertical-align: top;">
1500
</td>
<td style="vertical-align: top;">
us
</td>
RC7_DZ (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 7 dead zone
</p>
<p>
<strong>Comment:</strong> The +- range of this value around the trim value will be considered as zero.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 100.0
</td>
<td style="vertical-align: top;">
10.0
</td>
<td style="vertical-align: top;">
</td>
RC7_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 7 maximum
</p>
<p>
<strong>Comment:</strong> Maximum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
1500.0 > 2200.0
</td>
<td style="vertical-align: top;">
2000
</td>
<td style="vertical-align: top;">
us
</td>
RC7_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 7 minimum
</p>
<p>
<strong>Comment:</strong> Minimum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
800.0 > 1500.0
</td>
<td style="vertical-align: top;">
1000
</td>
<td style="vertical-align: top;">
us
</td>
<td style="vertical-align: top;">
<p>
RC channel 7 trim
</p>
<p>
<strong>Comment:</strong> Mid point value (has to be set to the same as min for throttle channel).
</p>
</td>
<td style="vertical-align: top;">
800.0 > 2200.0
</td>
<td style="vertical-align: top;">
1500
</td>
<td style="vertical-align: top;">
us
</td>
RC8_DZ (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 8 dead zone
</p>
<p>
<strong>Comment:</strong> The +- range of this value around the trim value will be considered as zero.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 100.0
</td>
<td style="vertical-align: top;">
10.0
</td>
<td style="vertical-align: top;">
</td>
RC8_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 8 maximum
</p>
<p>
<strong>Comment:</strong> Maximum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
1500.0 > 2200.0
</td>
<td style="vertical-align: top;">
2000
</td>
<td style="vertical-align: top;">
us
</td>
RC8_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 8 minimum
</p>
<p>
<strong>Comment:</strong> Minimum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
800.0 > 1500.0
</td>
<td style="vertical-align: top;">
1000
</td>
<td style="vertical-align: top;">
us
</td>
<td style="vertical-align: top;">
<p>
RC channel 8 trim
</p>
<p>
<strong>Comment:</strong> Mid point value (has to be set to the same as min for throttle channel).
</p>
</td>
<td style="vertical-align: top;">
800.0 > 2200.0
</td>
<td style="vertical-align: top;">
1500
</td>
<td style="vertical-align: top;">
us
</td>
RC9_DZ (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 9 dead zone
</p>
<p>
<strong>Comment:</strong> The +- range of this value around the trim value will be considered as zero.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 100.0
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
RC9_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 9 maximum
</p>
<p>
<strong>Comment:</strong> Maximum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
1500.0 > 2200.0
</td>
<td style="vertical-align: top;">
2000
</td>
<td style="vertical-align: top;">
us
</td>
RC9_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
RC channel 9 minimum
</p>
<p>
<strong>Comment:</strong> Minimum value for this channel.
</p>
</td>
<td style="vertical-align: top;">
800.0 > 1500.0
</td>
<td style="vertical-align: top;">
1000
</td>
<td style="vertical-align: top;">
us
</td>
<td style="vertical-align: top;">
<p>
RC channel 9 trim
</p>
<p>
<strong>Comment:</strong> Mid point value (has to be set to the same as min for throttle channel).
</p>
</td>
<td style="vertical-align: top;">
800.0 > 2200.0
</td>
<td style="vertical-align: top;">
1500
</td>
<td style="vertical-align: top;">
us
</td>
RC_CHAN_CNT (INT32)
<td style="vertical-align: top;">
<p>
RC channel count
</p>
<p>
<strong>Comment:</strong> This parameter is used by Ground Station software to save the number of channels which were used during RC calibration. It is only meant for ground station use.
</p>
</td>
<td style="vertical-align: top;">
0 > 18
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
RC_FAILS_THR (INT32)
<td style="vertical-align: top;">
<p>
Failsafe channel PWM threshold
</p>
<p>
<strong>Comment:</strong> Set to a value slightly above the PWM value assumed by throttle in a failsafe event, but ensure it is below the PWM value assumed by throttle during normal operation.
</p>
</td>
<td style="vertical-align: top;">
0 > 2200
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
us
</td>
RC_FLT_CUTOFF (FLOAT)
<td style="vertical-align: top;">
<p>
Cutoff frequency for the low pass filter on roll, pitch, yaw and throttle
</p>
<p>
<strong>Comment:</strong> Does not get set unless below RC_FLT_SMP_RATE/2 because of filter instability characteristics. Set to 0 to disable the filter.
</p>
</td>
<td style="vertical-align: top;">
0 > ?
</td>
<td style="vertical-align: top;">
10.0
</td>
<td style="vertical-align: top;">
Hz
</td>
RC_FLT_SMP_RATE (FLOAT)
<td style="vertical-align: top;">
<p>
Sample rate of the remote control values for the low pass filter on roll, pitch, yaw and throttle
</p>
<p>
<strong>Comment:</strong> Has an influence on the cutoff frequency precision.
</p>
</td>
<td style="vertical-align: top;">
1.0 > ?
</td>
<td style="vertical-align: top;">
50.0
</td>
<td style="vertical-align: top;">
Hz
</td>
<td style="vertical-align: top;">
<p>
Max input value for RSSI reading
</p>
<p>
<strong>Comment:</strong> Only used if RC_RSSI_PWM_CHAN > 0
</p>
</td>
<td style="vertical-align: top;">
0 > 2000
</td>
<td style="vertical-align: top;">
1000
</td>
<td style="vertical-align: top;">
</td>
RC_RSSI_PWM_MIN (INT32)
<td style="vertical-align: top;">
<p>
Min input value for RSSI reading
</p>
<p>
<strong>Comment:</strong> Only used if RC_RSSI_PWM_CHAN > 0
</p>
</td>
<td style="vertical-align: top;">
0 > 2000
</td>
<td style="vertical-align: top;">
2000
</td>
<td style="vertical-align: top;">
</td>
TRIM_PITCH (FLOAT)
<td style="vertical-align: top;">
<p>
Pitch trim
</p>
<p>
<strong>Comment:</strong> The trim value is the actuator control value the system needs for straight and level flight. It can be calibrated by flying manually straight and level using the RC trims and copying them using the GCS.
</p>
</td>
<td style="vertical-align: top;">
-0.25 > 0.25 (0.01)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
TRIM_ROLL (FLOAT)
<td style="vertical-align: top;">
<p>
Roll trim
</p>
<p>
<strong>Comment:</strong> The trim value is the actuator control value the system needs for straight and level flight. It can be calibrated by flying manually straight and level using the RC trims and copying them using the GCS.
</p>
</td>
<td style="vertical-align: top;">
-0.25 > 0.25 (0.01)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
TRIM_YAW (FLOAT)
<td style="vertical-align: top;">
<p>
Yaw trim
</p>
<p>
<strong>Comment:</strong> The trim value is the actuator control value the system needs for straight and level flight. It can be calibrated by flying manually straight and level using the RC trims and copying them using the GCS.
</p>
</td>
<td style="vertical-align: top;">
-0.25 > 0.25 (0.01)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Threshold for selecting acro mode
</p>
<p>
<strong>Comment:</strong> 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel<th
</p>
</td>
<td style="vertical-align: top;">
-1 > 1
</td>
<td style="vertical-align: top;">
0.5
</td>
<td style="vertical-align: top;">
</td>
RC_ARMSWITCH_TH (FLOAT)
<td style="vertical-align: top;">
<p>
Threshold for the arm switch
</p>
<p>
<strong>Comment:</strong> 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel<th
</p>
</td>
<td style="vertical-align: top;">
-1 > 1
</td>
<td style="vertical-align: top;">
0.25
</td>
<td style="vertical-align: top;">
</td>
RC_ASSIST_TH (FLOAT)
<td style="vertical-align: top;">
<p>
Threshold for selecting assist mode
</p>
<p>
<strong>Comment:</strong> 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel<th
</p>
</td>
<td style="vertical-align: top;">
-1 > 1
</td>
<td style="vertical-align: top;">
0.25
</td>
<td style="vertical-align: top;">
</td>
RC_AUTO_TH (FLOAT)
<td style="vertical-align: top;">
<p>
Threshold for selecting auto mode
</p>
<p>
<strong>Comment:</strong> 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel<th
</p>
</td>
<td style="vertical-align: top;">
-1 > 1
</td>
<td style="vertical-align: top;">
0.75
</td>
<td style="vertical-align: top;">
</td>
RC_GEAR_TH (FLOAT)
<td style="vertical-align: top;">
<p>
Threshold for the landing gear switch
</p>
<p>
<strong>Comment:</strong> 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel<th
</p>
</td>
<td style="vertical-align: top;">
-1 > 1
</td>
<td style="vertical-align: top;">
0.25
</td>
<td style="vertical-align: top;">
</td>
RC_KILLSWITCH_TH (FLOAT)
<td style="vertical-align: top;">
<p>
Threshold for the kill switch
</p>
<p>
<strong>Comment:</strong> 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel<th
</p>
</td>
<td style="vertical-align: top;">
-1 > 1
</td>
<td style="vertical-align: top;">
0.25
</td>
<td style="vertical-align: top;">
</td>
RC_LOITER_TH (FLOAT)
<td style="vertical-align: top;">
<p>
Threshold for selecting loiter mode
</p>
<p>
<strong>Comment:</strong> 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel<th
</p>
</td>
<td style="vertical-align: top;">
-1 > 1
</td>
<td style="vertical-align: top;">
0.5
</td>
<td style="vertical-align: top;">
</td>
RC_MAN_TH (FLOAT)
<td style="vertical-align: top;">
<p>
Threshold for the manual switch
</p>
<p>
<strong>Comment:</strong> 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel<th
</p>
</td>
<td style="vertical-align: top;">
-1 > 1
</td>
<td style="vertical-align: top;">
0.5
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Threshold for selecting offboard mode
</p>
<p>
<strong>Comment:</strong> 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel<th
</p>
</td>
<td style="vertical-align: top;">
-1 > 1
</td>
<td style="vertical-align: top;">
0.5
</td>
<td style="vertical-align: top;">
</td>
RC_POSCTL_TH (FLOAT)
<td style="vertical-align: top;">
<p>
Threshold for selecting posctl mode
</p>
<p>
<strong>Comment:</strong> 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel<th
</p>
</td>
<td style="vertical-align: top;">
-1 > 1
</td>
<td style="vertical-align: top;">
0.5
</td>
<td style="vertical-align: top;">
</td>
RC_RATT_TH (FLOAT)
<td style="vertical-align: top;">
<p>
Threshold for selecting rattitude mode
</p>
<p>
<strong>Comment:</strong> 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel<th
</p>
</td>
<td style="vertical-align: top;">
-1 > 1
</td>
<td style="vertical-align: top;">
0.5
</td>
<td style="vertical-align: top;">
</td>
RC_RETURN_TH (FLOAT)
<td style="vertical-align: top;">
<p>
Threshold for selecting return to launch mode
</p>
<p>
<strong>Comment:</strong> 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel<th
</p>
</td>
<td style="vertical-align: top;">
-1 > 1
</td>
<td style="vertical-align: top;">
0.5
</td>
<td style="vertical-align: top;">
</td>
RC_STAB_TH (FLOAT)
<td style="vertical-align: top;">
<p>
Threshold for the stabilize switch
</p>
<p>
<strong>Comment:</strong> 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel<th
</p>
</td>
<td style="vertical-align: top;">
-1 > 1
</td>
<td style="vertical-align: top;">
0.5
</td>
<td style="vertical-align: top;">
</td>
RC_TRANS_TH (FLOAT)
<td style="vertical-align: top;">
<p>
Threshold for the VTOL transition switch
</p>
<p>
<strong>Comment:</strong> 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel<th
</p>
</td>
<td style="vertical-align: top;">
-1 > 1
</td>
<td style="vertical-align: top;">
0.25
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Half-angle of the return mode altitude cone
</p>
<p>
<strong>Comment:</strong> Defines the half-angle of a cone centered around the destination position that affects the altitude at which the vehicle returns.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> No cone, always climb to RTL_RETURN_ALT above destination.
</li>
<li>
<strong>25:</strong> 25 degrees half cone angle.
</li>
<li>
<strong>45:</strong> 45 degrees half cone angle.
</li>
<li>
<strong>65:</strong> 65 degrees half cone angle.
</li>
<li>
<strong>80:</strong> 80 degrees half cone angle.
</li>
<li>
<strong>90:</strong> Only climb to at least RTL_DESCEND_ALT above destination.
</li>
</ul>
</td>
<td style="vertical-align: top;">
0 > 90
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
degrees
</td>
RTL_DESCEND_ALT (FLOAT)
<td style="vertical-align: top;">
<p>
Return mode loiter altitude
</p>
<p>
<strong>Comment:</strong> Descend to this altitude (above destination position) after return, and wait for time defined in RTL_LAND_DELAY. Land (i.e. slowly descend) from this altitude if autolanding allowed.
</p>
</td>
<td style="vertical-align: top;">
2 > 100 (0.5)
</td>
<td style="vertical-align: top;">
30
</td>
<td style="vertical-align: top;">
m
</td>
RTL_LAND_DELAY (FLOAT)
<td style="vertical-align: top;">
<p>
Return mode delay
</p>
<p>
<strong>Comment:</strong> Delay before landing (after initial descent) in Return mode. If set to -1 the system will not land but loiter at RTL_DESCEND_ALT.
</p>
</td>
<td style="vertical-align: top;">
-1 > 300 (0.5)
</td>
<td style="vertical-align: top;">
-1.0
</td>
<td style="vertical-align: top;">
s
</td>
RTL_MIN_DIST (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum horizontal distance from return destination, below which RTL_DESCEND_ALT is used as return altitude
</p>
<p>
<strong>Comment:</strong> If the vehicle is less than this horizontal distance from the return destination when return mode is activated it will ascend to RTL_DESCEND_ALT for the return journey (rather than the altitude set by RTL_RETURN_ALT and RTL_CONE_ANG).
</p>
</td>
<td style="vertical-align: top;">
0.5 > 100 (0.5)
</td>
<td style="vertical-align: top;">
5.0
</td>
<td style="vertical-align: top;">
m
</td>
RTL_RETURN_ALT (FLOAT)
<td style="vertical-align: top;">
<p>
Return mode return altitude
</p>
<p>
<strong>Comment:</strong> Default minimum altitude above destination (e.g. home, safe point, landing pattern) for return flight. This is affected by RTL_MIN_DIST and RTL_CONE_ANG.
</p>
</td>
<td style="vertical-align: top;">
0 > 150 (0.5)
</td>
<td style="vertical-align: top;">
60
</td>
<td style="vertical-align: top;">
m
</td>
RTL_TYPE (INT32)
<td style="vertical-align: top;">
<p>
Return type
</p>
<p>
<strong>Comment:</strong> Return mode destination and flight path (home location, rally point, mission landing pattern, reverse mission)
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Return to closest safe point (home or rally point) via direct path.
</li>
<li>
<strong>1:</strong> Return to closest safe point other than home (mission landing pattern or rally point), via direct path. If no mission landing or rally points are defined return home via direct path.
</li>
<li>
<strong>2:</strong> Return to a planned mission landing, if available, using the mission path, else return to home via the reverse mission path. Do not consider rally points.
</li>
<li>
<strong>3:</strong> Return via direct path to closest destination: home, start of mission landing pattern or safe point. If the destination is a mission landing pattern, follow the pattern to land.
</li>
</ul>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Address of the Roboclaw
</p>
<p>
<strong>Comment:</strong> The Roboclaw can be configured to have an address from 0x80 to 0x87, inclusive. It must be configured to match this parameter.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>128:</strong> 0x80
</li>
<li>
<strong>129:</strong> 0x81
</li>
<li>
<strong>130:</strong> 0x82
</li>
<li>
<strong>131:</strong> 0x83
</li>
<li>
<strong>132:</strong> 0x84
</li>
<li>
<strong>133:</strong> 0x85
</li>
<li>
<strong>134:</strong> 0x86
</li>
<li>
<strong>135:</strong> 0x87
</li>
</ul>
</td>
<td style="vertical-align: top;">
128 > 135
</td>
<td style="vertical-align: top;">
128
</td>
<td style="vertical-align: top;">
</td>
RBCLW_BAUD (INT32)
<td style="vertical-align: top;">
<p>
Roboclaw serial baud rate
</p>
<p>
<strong>Comment:</strong> Baud rate of the serial communication with the Roboclaw. The Roboclaw must be configured to match this rate.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>2400:</strong> 2400 baud
</li>
<li>
<strong>9600:</strong> 9600 baud
</li>
<li>
<strong>19200:</strong> 19200 baud
</li>
<li>
<strong>38400:</strong> 38400 baud
</li>
<li>
<strong>57600:</strong> 57600 baud
</li>
<li>
<strong>115200:</strong> 115200 baud
</li>
<li>
<strong>230400:</strong> 230400 baud
</li>
<li>
<strong>460800:</strong> 460800 baud
</li>
</ul>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
2400 > 460800
</td>
<td style="vertical-align: top;">
2400
</td>
<td style="vertical-align: top;">
</td>
RBCLW_COUNTS_REV (INT32)
<td style="vertical-align: top;">
<p>
Encoder counts per revolution
</p>
<p>
<strong>Comment:</strong> Number of encoder counts for one revolution. The roboclaw treats analog encoders (potentiometers) as having 2047 counts per rev. The default value of 1200 corresponds to the default configuration of the Aion R1 rover.
</p>
</td>
<td style="vertical-align: top;">
1 > ?
</td>
<td style="vertical-align: top;">
1200
</td>
<td style="vertical-align: top;">
</td>
RBCLW_READ_PER (INT32)
<td style="vertical-align: top;">
<p>
Encoder read period
</p>
<p>
<strong>Comment:</strong> How long to wait, in Milliseconds, between reading wheel encoder values over Uart from the Roboclaw
</p>
</td>
<td style="vertical-align: top;">
1 > 1000
</td>
<td style="vertical-align: top;">
10
</td>
<td style="vertical-align: top;">
ms
</td>
RBCLW_WRITE_PER (INT32)
<td style="vertical-align: top;">
<p>
Uart write period
</p>
<p>
<strong>Comment:</strong> How long to wait, in Milliseconds, between writing actuator controls over Uart to the Roboclaw
</p>
</td>
<td style="vertical-align: top;">
1 > 1000
</td>
<td style="vertical-align: top;">
10
</td>
<td style="vertical-align: top;">
ms
</td>
<td style="vertical-align: top;">
<p>
L1 distance
</p>
<p>
<strong>Comment:</strong> This is the waypoint radius
</p>
</td>
<td style="vertical-align: top;">
0.0 > 100.0 (0.1)
</td>
<td style="vertical-align: top;">
5.0
</td>
<td style="vertical-align: top;">
m
</td>
GND_L1_PERIOD (FLOAT)
<td style="vertical-align: top;">
<p>
L1 period
</p>
<p>
<strong>Comment:</strong> This is the L1 distance and defines the tracking point ahead of the rover it's following. Using values around 2-5 for a traxxas stampede. Shorten slowly during tuning until response is sharp without oscillation.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 50.0 (0.5)
</td>
<td style="vertical-align: top;">
10.0
</td>
<td style="vertical-align: top;">
m
</td>
GND_MAX_ANG (FLOAT)
<td style="vertical-align: top;">
<p>
Maximum turn angle for Ackerman steering. At a control output of 0, the steering wheels are at 0 radians. At a control output of 1, the steering wheels are at GND_MAX_ANG radians
</p>
</td>
<td style="vertical-align: top;">
0.0 > 3.14159 (0.01)
</td>
<td style="vertical-align: top;">
0.7854
</td>
<td style="vertical-align: top;">
rad
</td>
GND_SPEED_D (FLOAT)
<td style="vertical-align: top;">
<p>
Speed proportional gain
</p>
<p>
<strong>Comment:</strong> This is the derivative gain for the speed closed loop controller
</p>
</td>
<td style="vertical-align: top;">
0.00 > 50.0 (0.005)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
%m/s
</td>
GND_SPEED_I (FLOAT)
<td style="vertical-align: top;">
<p>
Speed Integral gain
</p>
<p>
<strong>Comment:</strong> This is the integral gain for the speed closed loop controller
</p>
</td>
<td style="vertical-align: top;">
0.00 > 50.0 (0.005)
</td>
<td style="vertical-align: top;">
0.1
</td>
<td style="vertical-align: top;">
%m/s
</td>
GND_SPEED_IMAX (FLOAT)
<td style="vertical-align: top;">
<p>
Speed integral maximum value
</p>
<p>
<strong>Comment:</strong> This is the maxim value the integral can reach to prevent wind-up.
</p>
</td>
<td style="vertical-align: top;">
0.005 > 50.0 (0.005)
</td>
<td style="vertical-align: top;">
1.0
</td>
<td style="vertical-align: top;">
%m/s
</td>
<td style="vertical-align: top;">
<p>
Speed proportional gain
</p>
<p>
<strong>Comment:</strong> This is the proportional gain for the speed closed loop controller
</p>
</td>
<td style="vertical-align: top;">
0.005 > 50.0 (0.005)
</td>
<td style="vertical-align: top;">
2.0
</td>
<td style="vertical-align: top;">
%m/s
</td>
GND_SPEED_THR_SC (FLOAT)
<td style="vertical-align: top;">
<p>
Speed to throttle scaler
</p>
<p>
<strong>Comment:</strong> This is a gain to map the speed control output to the throttle linearly.
</p>
</td>
<td style="vertical-align: top;">
0.005 > 50.0 (0.005)
</td>
<td style="vertical-align: top;">
1.0
</td>
<td style="vertical-align: top;">
%m/s
</td>
<td style="vertical-align: top;">
<p>
Control mode for speed
</p>
<p>
<strong>Comment:</strong> This allows the user to choose between closed loop gps speed or open loop cruise throttle speed
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> open loop control
</li>
<li>
<strong>1:</strong> close the loop with gps speed
</li>
</ul>
</td>
<td style="vertical-align: top;">
0 > 1
</td>
<td style="vertical-align: top;">
1
</td>
<td style="vertical-align: top;">
</td>
GND_THR_CRUISE (FLOAT)
<td style="vertical-align: top;">
<p>
Cruise throttle
</p>
<p>
<strong>Comment:</strong> This is the throttle setting required to achieve the desired cruise speed. 10% is ok for a traxxas stampede vxl with ESC set to training mode
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0 (0.01)
</td>
<td style="vertical-align: top;">
0.1
</td>
<td style="vertical-align: top;">
norm
</td>
GND_THR_IDLE (FLOAT)
<td style="vertical-align: top;">
<p>
Idle throttle
</p>
<p>
<strong>Comment:</strong> This is the minimum throttle while on the ground, it should be 0 for a rover
</p>
</td>
<td style="vertical-align: top;">
0.0 > 0.4 (0.01)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
norm
</td>
GND_THR_MAX (FLOAT)
<td style="vertical-align: top;">
<p>
Throttle limit max
</p>
<p>
<strong>Comment:</strong> This is the maximum throttle % that can be used by the controller. For a Traxxas stampede vxl with the ESC set to training, 30 % is enough
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0 (0.01)
</td>
<td style="vertical-align: top;">
0.3
</td>
<td style="vertical-align: top;">
norm
</td>
GND_THR_MIN (FLOAT)
<td style="vertical-align: top;">
<p>
Throttle limit min
</p>
<p>
<strong>Comment:</strong> This is the minimum throttle % that can be used by the controller. Set to 0 for rover
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0 (0.01)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
norm
</td>
GND_WHEEL_BASE (FLOAT)
<td style="vertical-align: top;">
<p>
Distance from front axle to rear axle
</p>
</td>
<td style="vertical-align: top;">
0.0 > ? (0.01)
</td>
<td style="vertical-align: top;">
2.0
</td>
<td style="vertical-align: top;">
m
</td>
<td style="vertical-align: top;">
<p>
Min. airspeed scaling factor for takeoff. Pitch up will be commanded when the following airspeed is reached: FW_AIRSPD_MIN * RWTO_AIRSPD_SCL
</p>
</td>
<td style="vertical-align: top;">
0.0 > 2.0 (0.01)
</td>
<td style="vertical-align: top;">
1.3
</td>
<td style="vertical-align: top;">
norm
</td>
RWTO_HDG (INT32)
<td style="vertical-align: top;">
<p>
Specifies which heading should be held during runnway takeoff
</p>
<p>
<strong>Comment:</strong> 0: airframe heading, 1: heading towards takeoff waypoint
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Airframe
</li>
<li>
<strong>1:</strong> Waypoint
</li>
</ul>
</td>
<td style="vertical-align: top;">
0 > 1
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
RWTO_MAX_PITCH (FLOAT)
<td style="vertical-align: top;">
<p>
Max pitch during takeoff. Fixed-wing settings are used if set to 0. Note that there is also a minimum pitch of 10 degrees during takeoff, so this must be larger if set
</p>
</td>
<td style="vertical-align: top;">
0.0 > 60.0 (0.5)
</td>
<td style="vertical-align: top;">
20.0
</td>
<td style="vertical-align: top;">
deg
</td>
RWTO_MAX_ROLL (FLOAT)
<td style="vertical-align: top;">
<p>
Max roll during climbout. Roll is limited during climbout to ensure enough lift and prevents aggressive navigation before we're on a safe height
</p>
</td>
<td style="vertical-align: top;">
0.0 > 60.0 (0.5)
</td>
<td style="vertical-align: top;">
25.0
</td>
<td style="vertical-align: top;">
deg
</td>
RWTO_MAX_THR (FLOAT)
<td style="vertical-align: top;">
<p>
Max throttle during runway takeoff. (Can be used to test taxi on runway)
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0 (0.01)
</td>
<td style="vertical-align: top;">
1.0
</td>
<td style="vertical-align: top;">
norm
</td>
RWTO_NAV_ALT (FLOAT)
<td style="vertical-align: top;">
<p>
Altitude AGL at which we have enough ground clearance to allow some roll. Until RWTO_NAV_ALT is reached the plane is held level and only rudder is used to keep the heading (see RWTO_HDG). This should be below FW_CLMBOUT_DIFF if FW_CLMBOUT_DIFF > 0
</p>
</td>
<td style="vertical-align: top;">
0.0 > 100.0 (1)
</td>
<td style="vertical-align: top;">
5.0
</td>
<td style="vertical-align: top;">
m
</td>
RWTO_PSP (FLOAT)
<td style="vertical-align: top;">
<p>
Pitch setpoint during taxi / before takeoff airspeed is reached. A taildragger with stearable wheel might need to pitch up a little to keep it's wheel on the ground before airspeed to takeoff is reached
</p>
</td>
<td style="vertical-align: top;">
-10.0 > 20.0 (0.5)
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
deg
</td>
RWTO_RAMP_TIME (FLOAT)
<td style="vertical-align: top;">
<p>
Throttle ramp up time for runway takeoff
</p>
</td>
<td style="vertical-align: top;">
1.0 > 15.0 (0.1)
</td>
<td style="vertical-align: top;">
2.0
</td>
<td style="vertical-align: top;">
s
</td>
<td style="vertical-align: top;">
<p>
Battery-only Logging
</p>
<p>
<strong>Comment:</strong> When enabled, logging will not start from boot if battery power is not detected (e.g. powered via USB on a test bench). This prevents extraneous flight logs from being created during bench testing. Note that this only applies to log-from-boot modes. This has no effect on arm-based modes.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
SDLOG_DIRS_MAX (INT32)
<td style="vertical-align: top;">
<p>
Maximum number of log directories to keep
</p>
<p>
<strong>Comment:</strong> If there are more log directories than this value, the system will delete the oldest directories during startup. In addition, the system will delete old logs if there is not enough free space left. The minimum amount is 300 MB. If this is set to 0, old directories will only be removed if the free space falls below the minimum. Note: this does not apply to mission log files.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 1000
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
SDLOG_MISSION (INT32)
<td style="vertical-align: top;">
<p>
Mission Log
</p>
<p>
<strong>Comment:</strong> If enabled, a small additional "mission" log file will be written to the SD card. The log contains just those messages that are useful for tasks like generating flight statistics and geotagging. The different modes can be used to further reduce the logged data (and thus the log file size). For example, choose geotagging mode to only log data required for geotagging. Note that the normal/full log is still created, and contains all the data in the mission log (and more).
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Disabled
</li>
<li>
<strong>1:</strong> All mission messages
</li>
<li>
<strong>2:</strong> Geotagging messages
</li>
</ul>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
SDLOG_MODE (INT32)
<td style="vertical-align: top;">
<p>
Logging Mode
</p>
<p>
<strong>Comment:</strong> Determines when to start and stop logging. By default, logging is started when arming the system, and stopped when disarming.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>-1:</strong> disabled
</li>
<li>
<strong>0:</strong> when armed until disarm (default)
</li>
<li>
<strong>1:</strong> from boot until disarm
</li>
<li>
<strong>2:</strong> from boot until shutdown
</li>
<li>
<strong>3:</strong> depending on AUX1 RC channel
</li>
</ul>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
SDLOG_PROFILE (INT32)
<td style="vertical-align: top;">
<p>
Logging topic profile (integer bitmask)
</p>
<p>
<strong>Comment:</strong> This integer bitmask controls the set and rates of logged topics. The default allows for general log analysis and estimator replay, while keeping the log file size reasonably small. Enabling multiple sets leads to higher bandwidth requirements and larger log files. Set bits true to enable: 0 : Default set (used for general log analysis) 1 : Full rate estimator (EKF2) replay topics 2 : Topics for thermal calibration (high rate raw IMU and Baro sensor data) 3 : Topics for system identification (high rate actuator control and IMU data) 4 : Full rates for analysis of fast maneuvers (RC, attitude, rates and actuators) 5 : Debugging topics (debug_*.msg topics, for custom code) 6 : Topics for sensor comparison (low rate raw IMU, Baro and Magnetomer data) 7 : Topics for computer vision and collision avoidance
</p>
<strong>Bitmask:</strong>
<ul>
<li>
<strong>0:</strong> Default set (general log analysis)
</li>
<li>
<strong>1:</strong> Estimator replay (EKF2)
</li>
<li>
<strong>2:</strong> Thermal calibration
</li>
<li>
<strong>3:</strong> System identification
</li>
<li>
<strong>4:</strong> High rate
</li>
<li>
<strong>5:</strong> Debug
</li>
<li>
<strong>6:</strong> Sensor comparison
</li>
<li>
<strong>7:</strong> Computer Vision and Avoidance
</li>
</ul>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 255
</td>
<td style="vertical-align: top;">
3
</td>
<td style="vertical-align: top;">
</td>
SDLOG_UTC_OFFSET (INT32)
<td style="vertical-align: top;">
<p>
UTC offset (unit: min)
</p>
<p>
<strong>Comment:</strong> the difference in hours and minutes from Coordinated Universal Time (UTC) for a your place and date. for example, In case of South Korea(UTC+09:00), UTC offset is 540 min (9*60) refer to https://en.wikipedia.org/wiki/List_of_UTC_time_offsets
</p>
</td>
<td style="vertical-align: top;">
-1000 > 1000
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
min
</td>
SDLOG_UUID (INT32)
<td style="vertical-align: top;">
<p>
Log UUID
</p>
<p>
<strong>Comment:</strong> If set to 1, add an ID to the log, which uniquely identifies the vehicle
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Enabled (1)
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Simulator Battery minimal percentage. Can be used to alter the battery level during SITL- or HITL-simulation on the fly. Particularly useful for testing different low-battery behaviour
</p>
</td>
<td style="vertical-align: top;">
0 > 100 (0.1)
</td>
<td style="vertical-align: top;">
50.0
</td>
<td style="vertical-align: top;">
%
</td>
SIM_DPRES_BLOCK (INT32)
<td style="vertical-align: top;">
<p>
Simulator block differential pressure data
</p>
<p>
<strong>Comment:</strong> Enable to block the publication of any incoming simulation differential pressure data.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
SIM_GPS_BLOCK (INT32)
<td style="vertical-align: top;">
<p>
Simulator block GPS data
</p>
<p>
<strong>Comment:</strong> Enable to block the publication of any incoming simulation GPS data.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
Disabled (0)
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
ID of the Accelerometer that the calibration is for
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
ID of the Accelerometer that the calibration is for
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
ID of the Accelerometer that the calibration is for
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
ID of the Gyro that the calibration is for
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
ID of the Gyro that the calibration is for
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
ID of the Gyro that the calibration is for
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Differential pressure sensor analog scaling
</p>
<p>
<strong>Comment:</strong> Pick the appropriate scaling from the datasheet. this number defines the (linear) conversion from voltage to Pascal (pa). For the MPXV7002DP this is 1000. NOTE: If the sensor always registers zero, try switching the static and dynamic tubes.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
<p>
Maximum height above ground when reliant on optical flow
</p>
<p>
<strong>Comment:</strong> This parameter defines the maximum distance from ground at which the optical flow sensor operates reliably. The height setpoint will be limited to be no greater than this value when the navigation system is completely reliant on optical flow data and the height above ground estimate is valid. The sensor may be usable above this height, but accuracy will progressively degrade.
</p>
</td>
<td style="vertical-align: top;">
1.0 > 25.0 (0.1)
</td>
<td style="vertical-align: top;">
3.0
</td>
<td style="vertical-align: top;">
m
</td>
SENS_FLOW_MAXR (FLOAT)
<td style="vertical-align: top;">
<p>
Magnitude of maximum angular flow rate reliably measurable by the optical flow sensor. Optical flow data will not fused by the estimators if the magnitude of the flow rate exceeds this value and control loops will be instructed to limit ground speed such that the flow rate produced by movement over ground is less than 50% of this value
</p>
</td>
<td style="vertical-align: top;">
1.0 > ?
</td>
<td style="vertical-align: top;">
2.5
</td>
<td style="vertical-align: top;">
rad/s
</td>
SENS_FLOW_MINHGT (FLOAT)
<td style="vertical-align: top;">
<p>
Minimum height above ground when reliant on optical flow
</p>
<p>
<strong>Comment:</strong> This parameter defines the minimum distance from ground at which the optical flow sensor operates reliably. The sensor may be usable below this height, but accuracy will progressively reduce to loss of focus.
</p>
</td>
<td style="vertical-align: top;">
0.0 > 1.0 (0.1)
</td>
<td style="vertical-align: top;">
0.7
</td>
<td style="vertical-align: top;">
m
</td>
<td style="vertical-align: top;">
<p>
Airspeed sensor compensation model for the SDP3x
</p>
<p>
<strong>Comment:</strong> Model with Pitot CAL_AIR_TUBED_MM: Not used, 1.5 mm tubes assumed. CAL_AIR_TUBELEN: Length of the tubes connecting the pitot to the sensor. Model without Pitot (1.5 mm tubes) CAL_AIR_TUBED_MM: Not used, 1.5 mm tubes assumed. CAL_AIR_TUBELEN: Length of the tubes connecting the pitot to the sensor. Tube Pressure Drop CAL_AIR_TUBED_MM: Diameter in mm of the pitot and tubes, must have the same diameter. CAL_AIR_TUBELEN: Length of the tubes connecting the pitot to the sensor and the static + dynamic port length of the pitot.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> Model with Pitot
</li>
<li>
<strong>1:</strong> Model without Pitot (1.5 mm tubes)
</li>
<li>
<strong>2:</strong> Tube Pressure Drop
</li>
</ul>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
CAL_AIR_TUBED_MM (FLOAT)
<td style="vertical-align: top;">
<p>
Airspeed sensor tube diameter. Only used for the Tube Pressure Drop Compensation
</p>
</td>
<td style="vertical-align: top;">
0.1 > 100
</td>
<td style="vertical-align: top;">
1.5
</td>
<td style="vertical-align: top;">
millimeter
</td>
CAL_AIR_TUBELEN (FLOAT)
<td style="vertical-align: top;">
<p>
Airspeed sensor tube length
</p>
<p>
<strong>Comment:</strong> See the CAL_AIR_CMODEL explanation on how this parameter should be set.
</p>
</td>
<td style="vertical-align: top;">
0.01 > 2.00
</td>
<td style="vertical-align: top;">
0.2
</td>
<td style="vertical-align: top;">
meter
</td>
CAL_MAG_SIDES (INT32)
<td style="vertical-align: top;">
<p>
Bitfield selecting mag sides for calibration
</p>
<p>
<strong>Comment:</strong> If set to two side calibration, only the offsets are estimated, the scale calibration is left unchanged. Thus an initial six side calibration is recommended. Bits: DETECT_ORIENTATION_TAIL_DOWN = 1 DETECT_ORIENTATION_NOSE_DOWN = 2 DETECT_ORIENTATION_LEFT = 4 DETECT_ORIENTATION_RIGHT = 8 DETECT_ORIENTATION_UPSIDE_DOWN = 16 DETECT_ORIENTATION_RIGHTSIDE_UP = 32
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>34:</strong> Two side calibration
</li>
<li>
<strong>38:</strong> Three side calibration
</li>
<li>
<strong>63:</strong> Six side calibration
</li>
</ul>
</td>
<td style="vertical-align: top;">
34 > 63
</td>
<td style="vertical-align: top;">
63
</td>
<td style="vertical-align: top;">
</td>
IMU_ACCEL_CUTOFF (FLOAT)
<td style="vertical-align: top;">
<p>
Low pass filter cutoff frequency for accel
</p>
<p>
<strong>Comment:</strong> The cutoff frequency for the 2nd order butterworth filter on the primary accelerometer. This only affects the signal sent to the controllers, not the estimators. 0 disables the filter.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 1000
</td>
<td style="vertical-align: top;">
30.0
</td>
<td style="vertical-align: top;">
Hz
</td>
IMU_DGYRO_CUTOFF (FLOAT)
<td style="vertical-align: top;">
<p>
Cutoff frequency for angular acceleration
</p>
<p>
<strong>Comment:</strong> The cutoff frequency for the 2nd order butterworth filter used on the time derivative of the measured angular velocity. Set to 0 to disable the filter.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 1000
</td>
<td style="vertical-align: top;">
10.0
</td>
<td style="vertical-align: top;">
Hz
</td>
IMU_GYRO_CUTOFF (FLOAT)
<td style="vertical-align: top;">
<p>
Low pass filter cutoff frequency for gyro
</p>
<p>
<strong>Comment:</strong> The cutoff frequency for the 2nd order butterworth filter on the primary gyro. This only affects the signal sent to the controllers, not the estimators. 0 disables the filter.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 1000
</td>
<td style="vertical-align: top;">
30.0
</td>
<td style="vertical-align: top;">
Hz
</td>
IMU_GYRO_NF_BW (FLOAT)
<td style="vertical-align: top;">
<p>
Notch filter bandwidth for gyro
</p>
<p>
<strong>Comment:</strong> The frequency width of the stop band for the 2nd order notch filter on the primary gyro. See "IMU_GYRO_NF_FREQ" to activate the filter and to set the notch frequency.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 100
</td>
<td style="vertical-align: top;">
20.0
</td>
<td style="vertical-align: top;">
Hz
</td>
IMU_GYRO_NF_FREQ (FLOAT)
<td style="vertical-align: top;">
<p>
Notch filter frequency for gyro
</p>
<p>
<strong>Comment:</strong> The center frequency for the 2nd order notch filter on the primary gyro. This filter can be enabled to avoid feedback amplification of structural resonances at a specific frequency. This only affects the signal sent to the controllers, not the estimators. 0 disables the filter. See "IMU_GYRO_NF_BW" to set the bandwidth of the filter.
</p>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 1000
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
Hz
</td>
IMU_GYRO_RATEMAX (INT32)
<td style="vertical-align: top;">
<p>
Gyro control data maximum publication rate
</p>
<p>
<strong>Comment:</strong> This is the maximum rate the gyro control data (sensor_gyro) will be allowed to publish at. Set to 0 to disable and publish at the native sensor sample rate.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> 0 (no limit)
</li>
<li>
<strong>50:</strong> 50 Hz
</li>
<li>
<strong>250:</strong> 250 Hz
</li>
<li>
<strong>400:</strong> 400 Hz
</li>
<li>
<strong>1000:</strong> 1000 Hz
</li>
<li>
<strong>2000:</strong> 2000 Hz
</li>
</ul>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
0 > 2000
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
Hz
</td>
<td style="vertical-align: top;">
<p>
Board rotation
</p>
<p>
<strong>Comment:</strong> This parameter defines the rotation of the FMU board relative to the platform.
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> No rotation
</li>
<li>
<strong>1:</strong> Yaw 45°
</li>
<li>
<strong>2:</strong> Yaw 90°
</li>
<li>
<strong>3:</strong> Yaw 135°
</li>
<li>
<strong>4:</strong> Yaw 180°
</li>
<li>
<strong>5:</strong> Yaw 225°
</li>
<li>
<strong>6:</strong> Yaw 270°
</li>
<li>
<strong>7:</strong> Yaw 315°
</li>
<li>
<strong>8:</strong> Roll 180°
</li>
<li>
<strong>9:</strong> Roll 180°, Yaw 45°
</li>
<li>
<strong>10:</strong> Roll 180°, Yaw 90°
</li>
<li>
<strong>11:</strong> Roll 180°, Yaw 135°
</li>
<li>
<strong>12:</strong> Pitch 180°
</li>
<li>
<strong>13:</strong> Roll 180°, Yaw 225°
</li>
<li>
<strong>14:</strong> Roll 180°, Yaw 270°
</li>
<li>
<strong>15:</strong> Roll 180°, Yaw 315°
</li>
<li>
<strong>16:</strong> Roll 90°
</li>
<li>
<strong>17:</strong> Roll 90°, Yaw 45°
</li>
<li>
<strong>18:</strong> Roll 90°, Yaw 90°
</li>
<li>
<strong>19:</strong> Roll 90°, Yaw 135°
</li>
<li>
<strong>20:</strong> Roll 270°
</li>
<li>
<strong>21:</strong> Roll 270°, Yaw 45°
</li>
<li>
<strong>22:</strong> Roll 270°, Yaw 90°
</li>
<li>
<strong>23:</strong> Roll 270°, Yaw 135°
</li>
<li>
<strong>24:</strong> Pitch 90°
</li>
<li>
<strong>25:</strong> Pitch 270°
</li>
<li>
<strong>26:</strong> Roll 270°, Yaw 270°
</li>
<li>
<strong>27:</strong> Roll 180°, Pitch 270°
</li>
<li>
<strong>28:</strong> Pitch 90°, Yaw 180
</li>
<li>
<strong>29:</strong> Pitch 90°, Roll 90°
</li>
<li>
<strong>30:</strong> Yaw 293°, Pitch 68°, Roll 90° (Solo)
</li>
<li>
<strong>31:</strong> Pitch 90°, Roll 270°
</li>
<li>
<strong>32:</strong> Pitch 9°, Yaw 180°
</li>
<li>
<strong>33:</strong> Pitch 45°
</li>
<li>
<strong>34:</strong> Pitch 315°
</li>
<li>
<strong>35:</strong> Roll 90°, Yaw 270°
</li>
</ul>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0
</td>
<td style="vertical-align: top;">
</td>
SENS_BOARD_X_OFF (FLOAT)
<td style="vertical-align: top;">
<p>
Board rotation X (Roll) offset
</p>
<p>
<strong>Comment:</strong> This parameter defines a rotational offset in degrees around the X (Roll) axis It allows the user to fine tune the board offset in the event of misalignment.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
deg
</td>
SENS_BOARD_Y_OFF (FLOAT)
<td style="vertical-align: top;">
<p>
Board rotation Y (Pitch) offset
</p>
<p>
<strong>Comment:</strong> This parameter defines a rotational offset in degrees around the Y (Pitch) axis. It allows the user to fine tune the board offset in the event of misalignment.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
deg
</td>
SENS_BOARD_Z_OFF (FLOAT)
<td style="vertical-align: top;">
<p>
Board rotation Z (YAW) offset
</p>
<p>
<strong>Comment:</strong> This parameter defines a rotational offset in degrees around the Z (Yaw) axis. It allows the user to fine tune the board offset in the event of misalignment.
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
0.0
</td>
<td style="vertical-align: top;">
deg
</td>
<td style="vertical-align: top;">
<p>
PX4Flow board rotation
</p>
<p>
<strong>Comment:</strong> This parameter defines the yaw rotation of the PX4FLOW board relative to the vehicle body frame. Zero rotation is defined as X on flow board pointing towards front of vehicle. The recommneded installation default for the PX4FLOW board is with the Y axis forward (270 deg yaw).
</p>
<strong>Values:</strong>
<ul>
<li>
<strong>0:</strong> No rotation
</li>
<li>
<strong>1:</strong> Yaw 45°
</li>
<li>
<strong>2:</strong> Yaw 90°
</li>
<li>
<strong>3:</strong> Yaw 135°
</li>
<li>
<strong>4:</strong> Yaw 180°
</li>
<li>
<strong>5:</strong> Yaw 225°
</li>
<li>
<strong>6:</strong> Yaw 270°
</li>
<li>
<strong>7:</strong> Yaw 315°
</li>
</ul>
<p>
<b>Reboot required:</b> true
</p>
</td>
<td style="vertical-align: top;">
</td>
<td style="vertical-align: top;">
6
</td>
<td style="vertical-align: top;">
</td>