Skip to content

uXRCE-DDS (PX4-ROS 2/DDS Bridge)

PX4 v1.14

INFO

uXRCE-DDS replaces the Fast-RTPS Bridge used in PX4 v1.13. If you were using the Fast-RTPS Bridge, please follow the migration guidelines.

PX4 uses uXRCE-DDS middleware to allow uORB messages to be published and subscribed on a companion computer as though they were ROS 2 topics. Це забезпечує швидку та надійну інтеграцію між PX4 та ROS 2, а також значно спрощує для додатків ROS 2 отримання інформації про транспортний засіб та надсилання команд.

PX4 uses an XRCE-DDS implementation that leverages eProsima Micro XRCE-DDS.

У цьому посібнику описано архітектуру та різні варіанти налаштування клієнта та агента. Зокрема, він охоплює опції, які є найбільш важливими для користувачів PX4.

Архітектура

Проміжне програмне забезпечення uXRCE-DDS складається з клієнта, що працює на PX4, і агента, що працює на комп'ютері-компаньйоні, з двостороннім обміном даними між ними по послідовному або UDP каналу. Агент діє як проксі-сервер для клієнта, дозволяючи йому публікувати та підписуватися на теми в глобальному просторі даних DDS.

Architecture uXRCE-DDS with ROS 2

In order for PX4 uORB topics to be shared on the DDS network you will need uXRCE-DDS client running on PX4, connected to the micro XRCE-DDS agent running on the companion.

The PX4 uxrce_dds_client publishes to/from a defined set of uORB topics to the global DDS data space.

The eProsima micro XRCE-DDS agent runs on the companion computer and acts as a proxy for the client in the DDS/ROS 2 network.

Сам агент не залежить від коду на стороні клієнта і може бути побудований та/або встановлений незалежно від PX4 або ROS.

Код, який хоче підписатися/публікувати до PX4, залежить від коду на стороні клієнта; йому потрібні визначення повідомлень uORB, які збігаються з тими, що були використані для створення клієнта PX4 uXRCE-DDS, щоб він міг інтерпретувати повідомлення.

Генерація коду

The PX4 uxrce_dds_client is generated at build time and included in PX4 firmare by default. Агент не залежить від клієнтського коду. Він може бути побудований окремо або в робочому просторі ROS 2, або встановлений як snap пакет в Ubuntu.

When PX4 is built, a code generator uses the uORB message definitions in the source tree (PX4-Autopilot/msg) to compile support for the subset of uORB topics in /src/modules/uxrce_dds_client/dds_topics.yaml into uxrce_dds_client.

PX4 main or release builds automatically export the set of uORB messages definitions in the build to an associated branch in PX4/px4_msgs.

ROS 2 applications need to be built in a workspace that includes the same message definitions that were used to create the uXRCE-DDS client module in the PX4 Firmware. These can be included into a workspace by cloning the interface package PX4/px4_msgs into your ROS 2 workspace and switching to the appropriate branch. Зауважте, що вся генерація коду, пов'язана з повідомленнями, обробляється ROS 2.

Встановлення Micro XRCE-DDS Agent

Micro XRCE-DDS Agent може бути встановлений на комп'ютер за допомогою бінарного пакета, зібраний і встановлений з вихідного коду, або зібраний і запущений з робочого простору ROS 2. All of these methods fetch all the dependencies needed to communicate with the client (such as FastCDR).

INFO

The official (and more complete) installation guide is the Eprosima: micro XRCE-DDS Installation Guide. У цьому розділі узагальнено варіанти, які були протестовані за допомогою PX4 під час створення цієї документації.

WARNING

PX4 Micro XRCE-DDS Client is based on version v2.x which is not compatible with the latest v3.x Agent version.

Окреме встановлення з вихідного коду

В Ubuntu ви можете зібрати з вихідного коду і встановити Агент окремо за допомогою наступних команд:

sh
git clone -b v2.4.2 https://github.com/eProsima/Micro-XRCE-DDS-Agent.git
cd Micro-XRCE-DDS-Agent
mkdir build
cd build
cmake ..
make
sudo make install
sudo ldconfig /usr/local/lib/

INFO

There are various build configuration options linked from the corresponding topic in the official guide, but these have not been tested.

Запустити агент з налаштуваннями для підключення до клієнта uXRCE-DDS, запущеного у симуляторі:

sh
MicroXRCEAgent udp4 -p 8888

Встановлення з Snap пакунку

Встановіть з пакунка snap на Ubuntu за допомогою наступної команди:

sh
sudo snap install micro-xrce-dds-agent --edge

Запустити агента з налаштуваннями для підключення до клієнта uXRCE-DDS, запущеного у симуляторі (зверніть увагу, що назва команди відрізняється від назви, яку ви збираєте локально):

sh
micro-xrce-dds-agent udp4 -p 8888

INFO

At time of writing the stable of version installed from snap connects to PX4 but reports errors creating topics. The development version, fetched using --edge above, does work.

Збірка/Запуск у межах робочого простору ROS 2

Агент може бути створений і запущений в робочому просторі ROS 2 (або створений окремо і запущений з робочого простору. You must already have installed ROS 2 following the instructions in: ROS 2 User Guide > Install ROS 2.

WARNING

This approach will use the existing ROS 2 versions of the Agent dependencies, such as fastcdr and fastdds. This considerably speeds up the build process but requires that the Agent dependency versions match the ROS 2 ones.

Створити агента в межах ROS:

  1. Створіть директорію робочого простору для агента:
sh
mkdir -p ~/px4_ros_uxrce_dds_ws/src
  1. Clone the source code for the eProsima Micro-XRCE-DDS-Agent to the /src directory (the main branch is cloned by default):
sh
cd ~/px4_ros_uxrce_dds_ws/src
git clone -b v2.4.2 https://github.com/eProsima/Micro-XRCE-DDS-Agent.git
  1. Source the ROS 2 development environment, and compile the workspace using colcon:

This builds all the folders under /src using the sourced toolchain.

Для запуску агента micro XRCE-DDS в робочому просторі:

  1. Source the local_setup.bash to make the executables available in the terminal (also setup.bash if using a new terminal).
  1. Запустіть агента з налаштуваннями для підключення до клієнта uXRCE-DDS, який працює на симуляторі:
sh
MicroXRCEAgent udp4 -p 8888

Запуск агента та клієнта

Запуск агента

Агент використовується для підключення до клієнта через конкретний канал, такий як UDP або послідовне з'єднання. The channel settings are specified when the agent is started, using command line options. These are documented in the eProsima user guide: Micro XRCE-DDS Agent > Agent CLI. Зверніть увагу, що агент підтримує багато варіантів каналів, але PX4 підтримує тільки UDP і послідовні з'єднання.

INFO

You should create a single instance of the agent for each channel over which you need to connect.

Наприклад, симулятор PX4 запускає клієнт uXRCE-DDS через UDP на порт 8888, тому для підключення до симулятора потрібно запустити агент за допомогою команди:

sh
MicroXRCEAgent udp4 -p 8888

При роботі з реальним обладнанням налаштування залежить від апаратного забезпечення, операційної системи та каналу. For example, if you're using the RPi UART0 serial port, you might connect using this command (based on the information in Raspberry Pi Documentation > Configuring UARTS):

sh
sudo MicroXRCEAgent serial --dev /dev/AMA0 -b 921600

INFO

For more information about setting up communications channels see Pixhawk + Companion Setup > Serial Port setup, and sub-documents.

Запуск клієнта

The uXRCE-DDS client module (uxrce_dds_client) is included by default in all firmware and the simulator. This must be started with appropriate settings for the communication channel that you wish to use to communicate with the agent.

INFO

The simulator automatically starts the client on localhost UDP port 8888 using the default uxrce-dds namespace.

The configuration can be done using the UXRCE-DDS parameters:

  • UXRCE_DDS_CFG: Set the port to connect on, such as TELEM2, Ethernet, or Wifi.

  • Якщо використовується Ethernet-підключення:

    • UXRCE_DDS_PRT: Use this to specify the agent UDP listening port. The default value is 8888.

    • UXRCE_DDS_AG_IP: Use this to specify the IP address of the agent. The IP address must be provided in int32 format as PX4 does not support string parameters. The default value is 2130706433 which corresponds to the localhost 127.0.0.1.

      You can use Tools/convert_ip.py to convert between the formats:

      • To obtain the int32 version of an IP in decimal dot notation the command is:

        sh
        python3 ./PX4-Autopilot/Tools/convert_ip.py <the IP address in decimal dot notation>
      • To get the IP address in decimal dot notation from the int32 version:

        sh
        python3 ./PX4-Autopilot/Tools/convert_ip.py -r <the IP address in int32 notation>
  • Якщо використовується послідовне підключення:

    • SER_TEL2_BAUD, SER_URT6_BAUD (and so on): Use the _BAUD parameter associated with the serial port to set the baud rate. For example, you'd set a value for SER_TEL2_BAUD if you are connecting to the companion using TELEM2. For more information see Serial port configuration.
  • Деякі налаштування можуть також потребувати встановлення цих параметрів:

    • UXRCE_DDS_KEY: The uXRCE-DDS key. Якщо ви працюєте в мультиклієнтській конфігурації з одним агентом, кожен клієнт повинен мати унікальний ненульовий ключ. Це насамперед важливо для симуляцій з кількома транспортними засобами, де всі клієнти під'єднані до UDP одного агента. (See the official eprosima documentation , uxr_init_session.)
    • UXRCE_DDS_DOM_ID: The DDS domain ID. Це забезпечує логічне розділення мереж DDS і може бути використано для розділення клієнтів на різні мережі. За замовчуванням, ROS 2 працює з ID 0.
    • UXRCE_DDS_PTCFG: uXRCE-DDS participant configuration. It allows to restrict the visibility of the DDS topics to the localhost only and to use user-customized participant configuration files stored on the agent side.
    • UXRCE_DDS_SYNCT: Bridge time synchronization enable. Клієнтський модуль uXRCE-DDS може синхронізувати мітку часу повідомлень, якими обмінюються через міст. Це стандартна конфігурація. In certain situations, for example during simulations, this feature may be disabled.

INFO

Many ports are already have a default configuration. Щоб використовувати ці порти, спочатку вимкніть існуючу конфігурацію:

Після встановлення можливо знадобиться перезавантаження PX4, щоб параметри набрали чинності. Після цього вони зберігатимуться під час наступних перезавантажень.

You can also start the uxrce_dds_client using a command line. This can be called as part of System Startup or through the MAVLink Shell (or a system console). Цей метод корисний, коли вам потрібно встановити власний простір імен клієнта, оскільки для цього не передбачено жодного параметра. For example, the following command can be used to connect via Ethernet to a remote host at 192.168.0.100:8888 and to set the client namespace to /drone/.

sh
uxrce_dds_client start -t udp -p 8888 -h 192.168.0.100 -n drone

Options -p or -h are used to bypass UXRCE_DDS_PRT and UXRCE_DDS_AG_IP.

Запуск клієнта в симуляції

The simulator startup logic (init.d-posix/rcS) uses the client startup commands for single and multi vehicle simulations, enabling the setting of appropriate instance ids and DDS namespaces. By default the client is started on localhost UDP port 8888 with no additional namespace.

Environment variables are provided that override some UXRCE-DDS parameters. Це дозволяє користувачам створювати власні файли запуску для своїх симуляцій:

For example, the following command can be used to start a Gazebo simulation with che client operating on the DDS domain 3, port 9999 and topic namespace drone.

sh
ROS_DOMAIN_ID=3 PX4_UXRCE_DDS_PORT=9999 PX4_UXRCE_DDS_NS=drone make px4_sitl gz_x500

Підтримувані повідомлення uORB

The set of PX4 uORB topics that are exposed through the client are set in dds_topics.yaml.

The topics are release specific (support is compiled into uxrce_dds_client at build time). Хоча більшість випусків мають підтримувати дуже схожий набір повідомлень, щоб бути впевненими, вам слід перевірити файл yaml для вашого конкретного релізу.

Note that ROS 2/DDS needs to have the same message definitions that were used to create the uXRCE-DDS client module in the PX4 Firmware in order to interpret the messages. The message definitions are stored in the ROS 2 interface package PX4/px4_msgs, and they are automatically synchronized by CI on the main and release branches. Note that all the messages from PX4 source code are present in the repository, but only those listed in dds_topics.yaml will be available as ROS 2 topics. Тому,

  • If you're using a main or release version of PX4 you can get the message definitions by cloning the interface package PX4/px4_msgs into your workspace.

  • Якщо ви створюєте або змінюєте повідомлення uORB, вам потрібно вручну оновити повідомлення у вашому робочому просторі з вихідного дерева PX4. Generally this means that you would update dds_topics.yaml, clone the interface package, and then manually synchronize it by copying the new/modified message definitions from PX4-Autopilot/msg to its msg folders. Assuming that PX4-Autopilot is in your home directory ~, while px4_msgs is in ~/px4_ros_com/src/, then the command might be:

    sh
    rm ~/px4_ros_com/src/px4_msgs/msg/*.msg
    cp ~/PX4-Autopilot/mgs/*.msg ~/px4_ros_com/src/px4_msgs/msg/

    INFO

    Technically, dds_topics.yaml completely defines the relationship between PX4 uORB topics and ROS 2 messages. For more information see DDS Topics YAML below.

:::

Customizing the Namespace

Custom topic and service namespaces can be applied at build time (changing dds_topics.yaml) or at runtime (which is useful for multi vehicle operations):

  • One possibility is to use the -n option when starting the uxrce_dds_client from command line. Ця техніка може бути використана як у симуляторах, так і на реальних транспортних засобах.
  • A custom namespace can be provided for simulations (only) by setting the environment variable PX4_UXRCE_DDS_NS before starting the simulation.

INFO

Changing the namespace at runtime will append the desired namespace as a prefix to all topic fields in dds_topics.yaml and all service servers. Отже, команди, подібні до:

sh
uxrce_dds_client start -n uav_1

або

sh
PX4_UXRCE_DDS_NS=uav_1 make px4_sitl gz_x500

згенерує теми під просторами імен:

sh
/uav_1/fmu/in/  # for subscribers
/uav_1/fmu/out/ # for publishers

PX4 ROS 2 QoS Settings

PX4 QoS settings for publishers are incompatible with the default QoS settings for ROS 2 subscribers. So if ROS 2 code needs to subscribe to a uORB topic, it will need to use compatible QoS settings. One example of which is shown in ROS 2 User Guide > ROS 2 Subscriber QoS Settings.

PX4 uses the following QoS settings for publishers:

cpp
uxrQoS_t qos = {
  .durability = UXR_DURABILITY_TRANSIENT_LOCAL,
  .reliability = UXR_RELIABILITY_BEST_EFFORT,
  .history = UXR_HISTORY_KEEP_LAST,
  .depth = 0,
};

PX4 uses the following QoS settings for subscribers:

cpp
uxrQoS_t qos = {
  .durability = UXR_DURABILITY_VOLATILE,
  .reliability = UXR_RELIABILITY_BEST_EFFORT,
  .history = UXR_HISTORY_KEEP_LAST,
  .depth = queue_depth,
};

ROS 2 uses the following QoS settings (by default) for publishers and subscriptions: "keep last" for history with a queue size of 10, "reliable" for reliability, "volatile" for durability, and "system default" for liveliness. Deadline, lifespan, and lease durations are also all set to "default".

DDS Topics YAML

The PX4 dds_topics.yaml file defines the set of PX4 uORB topics that are built into firmware and published. More precisely, it completely defines the relationship/pairing between PX4 uORB and ROS 2 messages.

The file is structured as follows:

yaml
publications:

  - topic: /fmu/out/collision_constraints
    type: px4_msgs::msg::CollisionConstraints
    rate_limit: 50.  # Limit max publication rate to 50 Hz

  ...

  - topic: /fmu/out/vehicle_odometry
    type: px4_msgs::msg::VehicleOdometry
    # Use default publication rate limit of 100 Hz

  - topic: /fmu/out/vehicle_status
    type: px4_msgs::msg::VehicleStatus
    rate_limit: 5.

  - topic: /fmu/out/vehicle_trajectory_waypoint_desired
    type: px4_msgs::msg::VehicleTrajectoryWaypoint

subscriptions:

  - topic: /fmu/in/offboard_control_mode
    type: px4_msgs::msg::OffboardControlMode

  ...

  - topic: /fmu/in/vehicle_trajectory_waypoint
    type: px4_msgs::msg::VehicleTrajectoryWaypoint

subscriptions_multi:

  - topic: /fmu/in/vehicle_optical_flow_vel
    type: px4_msgs::msg::VehicleOpticalFlowVel

  ...

Each (topic,type) pairs defines:

  1. A new publication, subscription, or subscriptions_multi, depending on the list to which it is added.
  2. The topic base name, which must coincide with the desired uORB topic name that you want to publish/subscribe. It is identified by the last token in topic: that starts with / and does not contains any / in it. vehicle_odometry, vehicle_status and offboard_control_mode are examples of base names.
  3. The topic namespace. By default it is set to:
  • /fmu/out/ for topics that are published by PX4.
  • /fmu/in/ for topics that are subscribed by PX4.
  1. The message type (VehicleOdometry, VehicleStatus, OffboardControlMode, etc.) and the ROS 2 package (px4_msgs) that is expected to provide the message definition.
  2. (Optional): An additional rate_limit field (only for publication entries), which specifies the maximum rate (Hz) at which messages will be published on this topic by PX4 to ROS 2. If left unspecified, the maximum publication rate limit is set to 100 Hz.

subscriptions and subscriptions_multi allow us to choose the uORB topic instance that ROS 2 topics are routed to: either a shared instance that may also be getting updates from internal PX4 uORB publishers, or a separate instance that is reserved for ROS2 publications, respectively. Without this mechanism all ROS 2 messages would be routed to the same uORB topic instance (because ROS 2 does not have the concept of multiple topic instances), and it would not be possible for PX4 subscribers to differentiate between streams from ROS 2 or PX4 publishers.

Add a topic to the subscriptions section to:

  • Create a unidirectional route going from the ROS2 topic to the default instance (instance 0) of the associated uORB topic. For example, it creates a ROS2 subscriber of /fmu/in/vehicle_odometry and a uORB publisher of vehicle_odometry.
  • If other (internal) PX4 modules are already publishing on the same uORB topic instance as the ROS2 publisher, the instance's subscribers will receive all streams of messages. The uORB subscriber will not be able to determine if an incoming message was published by PX4 or by ROS2.
  • This is the desired behavior when the ROS2 publisher is expected to be the sole publisher on the topic instance (for example, replacing an internal publisher to the topic during offboard control), or when the source of multiple publishing streams does not matter.

Add a topic to the subscriptions_multi section to:

  • Create a unidirectional route going from the ROS2 topic to a new instance of the associated uORB topic. For example, if vehicle_odometry has already 2 instances, it creates a ROS2 subscriber of /fmu/in/vehicle_odometry and a uORB publisher on instance 3 of vehicle_odometry.
  • This ensures that no other internal PX4 module will publish on the same instance used by uXRCE-DDS. The subscribers will be able to subscribe to the desired instance and distinguish between publishers.
  • Note, however, that this guarantees separation between PX4 and ROS2 publishers, not among multiple ROS2 publishers. In that scenario, their messages will still be routed to the same instance.
  • This is the desired behavior, for example, when you want PX4 to log the readings of two equal sensors; they will both publish on the same topic, but one will use instance 0 and the other will use instance 1.

You can arbitrarily change the configuration. For example, you could use different default namespaces or use a custom package to store the message definitions.

DDS (ROS 2) Services

PX4 uXRCE-DDS middleware supports ROS 2 services. These are remote procedure calls, from one node to another, which return a result. They simplify communication between ROS 2 nodes and PX4 by grouping the request and response behaviour, and ensuring that replies are only returned to the specific requesting user.

A service server is the entity that will accept a remote procedure request, perform some computation on it, and return the result. For example, the /fmu/vehicle_command service server defined in px4_msgs::srv::VehicleCommand can be called by ROS 2 applications to send PX4 VehicleCommand uORB messages and receive PX4 VehicleCommandAck uORB messages in response.

For a list of services, details and examples see the service documentation in the ROS 2 User Guide.

Fast-RTPS to uXRCE-DDS Migration Guidelines

These guidelines explain how to migrate from using PX4 v1.13 Fast-RTPS middleware to PX4 v1.14 uXRCE-DDS middleware. These are useful if you have ROS 2 applications written for PX4 v1.13, or you have used Fast-RTPS to interface your applications to PX4 directly.

INFO

This section contains migration-specific information. You should also read the rest of this page to properly understand uXRCE-DDS.

Dependencies do not need to be removed

uXRCE-DDS does not need the dependencies that were required for Fast-RTPS, such as those installed by following the topic Fast DDS Installation. You can keep them if you want, without affecting your uXRCE-DDS applications.

If you do choose to remove the dependencies, take care not to remove anything that is used by applications (for example, Java).

_rtps targets have been removed

Anywhere you previously used a build target with extension _rtps, such as px4_fmu-v5_rtps or px4_sitl_rtps, you can now use the equivalent default target (for these cases px4_fmu-v5_default and px4_sitl_default).

The make targets with extension _rtps were used to build firmware that included client side RTPS code. The uXRCE-DDS middleware is included by default in builds for most boards, so you no longer need a special firmware to work with ROS 2.

To check if your board has the middleware, look for CONFIG_MODULES_UXRCE_DDS_CLIENT=y in the .px4board file of your board. Those files are nested in PX4-Autopilot/boards.

If it is not present, or if it is set to n, then you have to clone the PX4 repo, modify the board configuration and manually compile the firmware.

New client module and new start parameters

As the client is implemented by a new PX4 module, you now have new parameters to start it. Take a look at the client startup section to learn how this is done.

New file for setting which topics are published

The list of topics that are published and subscribed for a particular firmware is now managed by the dds_topics.yaml configuration file, which replaces urtps_bridge_topics.yaml

See Supported uORB Messages and DDS Topics YAML sections for more information.

Topics no longer need to be synced between client and agent.

The list of bridged topics between agent and client no longer needs to be synced for ROS 2, so the update_px4_ros2_bridge.sh script is no longer needed.

Default topic naming convention has changed

The topic naming format changed:

  • Published topics: /fmu/topic-name/out (Fast-RTPS) to /fmu/out/topic-name (XRCE-DDS).
  • Subscribed topics: /fmu/topic-name/in(Fast-RTPS) to /fmu/in/topic-name (XRCE-DDS).

You should update your application to the new convention.

INFO

You might also edit dds_topic.yaml to revert to the old convention. This is not recommended because it means that you would have to always use custom firmware.

XRCE-DDS-Agent

The XRCE-DDS agent is "generic" and independent of PX4: micro-xrce-dds-agent. There are many ways to install it on your PC / companion computer - for more information see the dedicated section.

Application-Specific Changes

If you where not using ROS 2 alongside the agent (Fast DDS Interface ROS-Independent), then you need to migrate to eProsima Fast DDS.

ROS 2 applications still need to compile alongside the PX4 messages, which you do by adding the px4_msgs package to your workspace. You can remove the px4_ros_com package as it is no longer needed, other than for example code.

In your ROS 2 nodes, you will need to:

  • Update the QoS of your publishers and subscribers as PX4 does not use the ROS 2 default settings.

  • Change the names of your topics, unless you edited dds_topic.yaml.

  • Remove everything related to time synchronization, as XRCE-DDS automatically takes care of agent/client time synchronization.

    In C++ applications you can set the timestamp field of your messages like this:

    cpp
    msg.timestamp = this->get_clock()->now().nanoseconds() / 1000;

    In Python applications you can set the timestamp field of your messages like this:

    python
    msg.timestamp = int(self.get_clock().now().nanoseconds / 1000)

Helpful Resources