使用 ECL EKF
本文主要回答使用 ECL EKF 算法的常见问题。
TIP
The PX4 State Estimation Overview video from the PX4 Developer Summit 2019 (Dr. Paul Riseborough) provides an overview of the estimator, and additionally describes both the major changes from 2018/2019, and the expected improvements through 2020.
什么是 ecl EKF?
估计和控制库(ECL)使用扩展卡尔曼滤波算法(EKF)来处理传感器的测量信息,并提供如下状态量的估计值:
- 四元数定义从北,东,地局部地球坐标系到 X,Y,Z 机体坐标系的旋转
- IMU 处的速度 - 北,东,地 (m/s)
- IMU 处的位置 - 北,东,地 (m)
- IMU 增量角度偏差估计 - X, Y, Z (rad)
- IMU 增量速度偏差估计 - X, Y, Z(m/s)
- 地球磁场组分 - 北,东,地 (gauss)
- 飞行器机体坐标系磁场偏差 - X, Y, Z (gauss)
- 风速-北, 东(m/s)
EKF 在延迟的“融合时间范围”上运行,以允许相对于 IMU 的每次测量的不同时间延迟。 为了保证所有传感器数据都能在正确的时间内使用,每个传感器的数据都是按照先入先出(FIFO)队列进行缓存,并由EKF从缓存区中读取。 The delay compensation for each sensor is controlled by the EKF2_*_DELAY parameters.
互补滤波器用于使用缓冲的 IMU 数据将状态从“融合时间范围”向前传播到当前时间。 The time constant for this filter is controlled by the EKF2_TAU_VEL and EKF2_TAU_POS parameters.
INFO
The 'fusion time horizon' delay and length of the buffers is determined by the largest of the EKF2_*_DELAY
parameters. 如果未使用传感器,建议将其时间延迟设置为零。 减少“融合时间范围”延迟减少了用于将状态向前传播到当前时间的互补滤波器中的误差。
位置及速度状态变量在输出至控制回路之前会根据IMU与机体坐标系之间的偏差量进行修正。 The position of the IMU relative to the body frame is set by the EKF2_IMU_POS_X,Y,Z
parameters.
EKF仅将IMU数据用于状态预测。 在EKF推导中,IMU数据不作为观测值使用。 The algebraic equations for the covariance prediction, state update and covariance update were derived using the Matlab symbolic toolbox and can be found here: Matlab Symbolic Derivation.
运行单个EKF实例
The default behaviour is to run a single instance of the EKF. 在这种情况下,在EKF收到数据之前执行传感器选择和故障切换。 这为防止有限数量的传感器故障,如数据丢失等,提供了保护。 但不能防止传感器提供的不准确数据超过EKF和控制循环的补偿能力。
运行单个EKF实例的参数设置为:
- EKF2_MULTI_IMU = 0
- EKF2_MULTI_MAG = 0
- SENS_IMU_MODE = 1
- SENS_MAG_MODE = 1
运行多个EKF实例
根据IMU和磁强计的数量以及自动驾驶仪的CPU能力,EKF可以运行多个实例。 这提供了一系列更广泛的传感器错误的保护,每个EKF实例使用不同的传感器组合实现了这一点。 通过比较每个EKF实例的内部一致性,EKF选择器能够确定具有最佳数据一致性的EKF和传感器组合。 这样可以检测和隔离IMU偏差、饱和或数据卡住等故障。
The total number of EKF instances is the product of the number of IMU's and number of magnetometers selected by EKF2_MULTI_IMU and EKF2_MULTI_MAG and is given by the following formula:
N_instances = MAX(EKF2_MULTI_IMU , 1) x MAX(EKF2_MULTI_MAG , 1)
例如,一个带有 2 个IMU和 2 个磁强计的自动化驾驶仪可以在 EKF2_MULTI_IMU = 2 和 EKF2_MULTI_MAG = 2 的情况下运行,总共 4 个EKF实例,其中每个实例使用以下传感器组合:
- EKF instance 1 : IMU 1, magnetometer 1
- EKF instance 2 : IMU 1, magnetometer 2
- EKF instance 3 : IMU 2, magnetometer 1
- EKF instance 4 : IMU 2, magnetometer 2
可处理的IMU或磁强计传感器的最大数量为每种传感器有4个,因此理论上最大有 4 x 4 = 16 个EKF实例。 实际上,这种做法受到现有计算资源的限制。 在开发这一功能的过程中,使用基于STM32F7的硬件的CPU进行测试,结果显示 4 个EKF实例具有可接受的处理负载和内存利用率裕度。
WARNING
Ground based testing to check CPU and memory utilisation should be performed before flying.
If EKF2_MULTI_IMU >= 3, then the failover time for large rate gyro errors is further reduced because the EKF selector is able to apply a median select strategy for faster isolation of the faulty IMU.
多EKF实例的设置由以下参数控制:
SENS_IMU_MODE: Set to 0 if running multiple EKF instances with IMU sensor diversity, ie EKF2_MULTI_IMU > 1.
当设置为 1 (单个EKF 操作默认值)时,传感器模块选择EKF使用的IMU 数据。 这种保护可防止来自传感器的数据丢失,但并不能防止不良的传感器数据。 当设置为 0 时,传感器模块不进行选择。
SENS_MAG_MODE: Set to 0 if running multiple EKF instances with magnetometer sensor diversity, ie EKF2_MULTI_MAG > 1.
当设置为 1 (单个EKF 操作默认值)时,传感器模块选择EKF使用的磁强计数据。 这种保护可防止来自传感器的数据丢失,但并不能防止不良的传感器数据。 当设置为 0 时,传感器模块不进行选择。
EKF2_MULTI_IMU: This parameter specifies the number of IMU sensors used by the multiple EKF's. If
EKF2_MULTI_IMU
<= 1, then only the first IMU sensor will be used. When SENS_IMU_MODE = 1, this will be the sensor selected by the sensor module. IfEKF2_MULTI_IMU
>= 2, then a separate EKF instance will run for the specified number of IMU sensors up to the lesser of 4 or the number of IMU's present.EKF2_MULTI_MAG: This parameter specifies the number of magnetometer sensors used by the multiple EKF's If
EKF2_MULTI_MAG
<= 1, then only the first magnetometer sensor will be used. When SENS_MAG_MODE = 1, this will be the sensor selected by the sensor module. IfEKF2_MULTI_MAG
>= 2, then a separate EKF instance will run for the specified number of magnetometer sensors up to the lesser of 4 or the number of magnetometers present.
INFO
The recording and EKF2 replay of flight logs with multiple EKF instances is not supported. To enable recording for EKF replay you must set the parameters to enable a single EKF instance.
它使用什么传感器测量值?
EKF 具有不同的操作模式,以允许不同的传感器测量组合。 滤波器在启动时会检查传感器的最小可行组合,并且在完成初始倾斜,偏航和高度对准之后,进入提供旋转,垂直速度,垂直位置,IMU 增量角度偏差和 IMU 增量速度偏差估计的模式。
此模式需要 IMU 数据,一个偏航源(磁力计或外部视觉)和一个高度数据源。 所有EKF操作模式都需要这个最小数据集。 在此基础上可以使用其它传感器数据来估计额外的状态变量。
IMU
- 三轴机体固连惯性测量单元,以最小100Hz的频率获取增量角度和增量速度数据 。 注意:在 EKF 使用它们之前,应该使用圆锥校正算法校正 IMU 增量角度数据。
磁罗盘
需要以最小 5Hz 的速率的三轴机体固连磁力计数据(或外部视觉系统姿势数据)。
磁力计数据可以用于两种方式:
- 使用倾角估计和磁偏角将磁力计测量值转换为偏航角。 The yaw angle is then used as an observation by the EKF.
- 该方法精度较低并且不允许学习机体坐标系场偏移,但是它对于磁场异常和大的初置陀螺偏差更有鲁棒性。
- 它是启动期间和在地面时的默认方法。
- XYZ 磁力计读数用作单独的观测值。
- This method is more accurate but requires that the magnetometer biases are correctly estimated.
- The biases are observable while the drone is rotating and the true heading is observable when the vehicle is accelerating (linear acceleration).
- Since the biases can change and are only observable when moving, it is safer to switch back to heading fusion when not moving.
- It assumes the earth magnetic field environment only changes slowly and performs less well when there are significant external magnetic anomalies.
- This is the default method used when the vehicle is moving.
- This method is more accurate but requires that the magnetometer biases are correctly estimated.
The logic used to select these modes is set by the EKF2_MAG_TYPE parameter. The default 'Automatic' mode (EKF2_MAG_TYPE=0
) is recommended as it uses the more robust magnetometer yaw on the ground, and more accurate 3-axis magnetometer when moving. Setting '3-axis' mode all the time (EKF2_MAG_TYPE=2
) is more error-prone, and requires that all the IMUs are well calibrated.
The option is available to operate without a magnetometer, either by replacing it using yaw from a dual antenna GPS or using the IMU measurements and GPS velocity data to estimate yaw from vehicle movement.
高度
A source of height data - GPS, barometric pressure, range finder, external vision or a combination of those at a minimum rate of 5Hz is required.
If none of the selected measurements are present, the EKF will not start. 当检测到这些测量值时,EKF 将初始化状态并完成倾角和偏航对准。 当倾角和偏航对齐完成后,EKF 可以转换到其它操作模式,从而可以使用其它传感器数据:
Each height source can be enabled/disabled using its dedicated control parameter:
- GNSS/GPS: EKF2_GPS_CTRL
- Barometer: EKF2_BARO_CTRL
- Range finder: EKF2_RNG_CTRL
- External vision: Enabled when EKF2_HGT_REF is set to "Vision"
Over the long term the height estimate follows the "reference source" of height data. This reference is defined by the EKF2_HGT_REF parameter.
Typical configurations
EKF2_GPS_CTRL | EKF2_BARO_CTRL | EKF2_RNG_CTRL | EKF2_HGT_REF | |
---|---|---|---|---|
Outdoor (default) | 7 (Lon/lat/alt/vel) | 1 (enabled) | 1 (conditional) | 1 (GNSS) |
Indoor (non-flat terrain) | 0 (disabled) | 1 (enabled) | 1 (conditional) | 2 (range) |
Indoor (flat terrain) | 0 (disabled) | 1 (enabled) | 2 (always enabled) | 2 (range) |
External vision | As required | As required | As required | 3 (vision) |
Barometer
Enable/disable using EKF2_BARO_CTRL as a source for Height data.
Note that data from only one barometer is fused, even if multiple barometers are available. The barometer with the highest CAL_BAROx_PRIO priority value is selected first, falling back to the next highest priority barometer if a sensor fault is detected. If barometers have equal-highest priorities, the first detected is used. A barometer can be completely disabled as a possible source by setting its CAL_BAROx_PRIO
value to 0
(disabled).
See Height more details about the configuration of height sources.
静态气压位置误差校正
气压表示的海拔高度因机体风的相对速度和方向造成的空气动力扰动而发生误差。 This is known in aeronautics as static pressure position error. 使用ECL/EKF2估计器库的EKF2模块提供了补偿这些误差的方法,只要风速状态估计是激活的。
For vehicles operating in a fixed-wing mode, wind speed state estimation requires either Airspeed and/or Synthetic Sideslip fusion to be enabled.
For multi-rotors, fusion of Drag Specific Forces can be enabled and tuned to provide the required wind velocity state estimates.
EKF2模块将误差建模为与机体固连的椭球体,在将其转换为高度估计之前,它指定了从大气气压中加/减的动态气压的分量。
以下方法可获得良好的调参参数:
Fly once in Position mode repeatedly forwards/backwards/left/right/up/down between rest and maximum speed (best results are obtained when this testing is conducted in still conditions).
Extract the
.ulg
log file using, for example, QGroundControl: Analyze > Log DownloadINFO
The same log file can be used to tune the multirotor wind estimator.
:::
- Use the log with the baro_static_pressure_compensation_tuning.py Python script to obtain the optimal set of parameters.
调整参数:
Barometer bias compensation
A barometer at a constant altitude is subject to drift in its measurements due to changes in the ambient pressure environment or variations of the sensor temperature. To compensate for this measurement error, EKF2 estimates the bias using GNSS height (if available) a "non drifting" reference. No tuning is required.
GNSS/GPS
位置和速度测量
如果满足以下条件,GPS 测量将用于位置和速度:
- GPS use is enabled via setting of the EKF2_GPS_CTRL parameter.
- GPS 信号质量检查已通过。 These checks are controlled by the EKF2_GPS_CHECK and
EKF2_REQ_*
parameters.
For more details about the configuration of height sources, click here.
偏航角测量
Some GPS receivers such as the Trimble MB-Two RTK GPS receiver can be used to provide a heading measurement that replaces the use of magnetometer data. 在存在大型磁场异常的环境中工作时,或在高纬度地区,地球磁场具有很大的磁倾角时,这可能是一个重要的优势。 Use of GPS yaw measurements is enabled by setting bit position 3 to 1 (adding 8) in the EKF2_GPS_CTRL parameter.
从 GPS 速度数据获取偏航角
EKF在内部运行一个附加的多假设滤波器,它使用多个3-状态---北/东向(N/E)的速度和偏航角---的扩展卡尔曼滤波器(EKF)。 然后使用高斯加和滤波器(GSF)合并这些偏航角的估计值。 单个3-状态的EKF使用了IMU和GPS水平速度数据(加上可选的空速数据),而不依赖于事先对偏航角或磁强计测量有任何知识。 这里提供了一个对于主滤波器的偏航角备份,当起飞后导航丢失,表明磁力计的偏航估计值不好时,它被用于重置主 EKF 滤波器的24-状态的中的偏航数据。 This will result in an Emergency yaw reset - magnetometer use stopped
message information message at the GCS.
Data from this estimator is logged when ekf2 replay logging is enabled and can be viewed in the yaw_estimator_status
message. The individual yaw estimates from the individual 3-state EKF yaw estimators are in the yaw
fields. The GSF combined yaw estimate is in the yaw_composite
field. The variance for the GSF yaw estimate is in the yaw_variance
field. 所有角度的单位均为弧度。 Weightings applied by the GSF to the individual 3-state EKF outputs are in theweight
fields.
这也使得 ECL 能够在没有任何磁力计、或没有双天线 GPS 接收器的情况下运行,并提供偏航数据,只要起飞后能够进行某种水平的移动,偏航数据就变得可观测。 To use this feature, set EKF2_MAG_TYPE to none
(5) to disable magnetometer use. 一旦机体完成了足够的水平移动,使偏航角可观测, 24-状态的主EKF将使其偏航角与GSF的估计值对齐,并开始使用 GPS。
双 GPS 接收器
GPS接收器提供的数据可以用基于所报告数据的精确度的加权算法混合(如果两者都以相同的速度输出数据并使用相同的精确度,这样做效果最好)。 如果来自接收器的数据丢失,该机制还提供了自动故障转移,(例如,它允许使用标准 GPS 作为更精确的 RTK 接收器的备份)。 This is controlled by the SENS_GPS_MASK parameter.
The SENS_GPS_MASK parameter is set by default to disable blending and always use the first receiver, so it will have to be set to select which receiver accuracy metrics are used to decide how much each receiver output contributes to the blended solution. Where different receiver models are used, it is important that the SENS_GPS_MASK parameter is set to a value that uses accuracy metrics that are supported by both receivers. For example do not set bit position 0 to true
unless the drivers for both receivers publish values in the s_variance_m_s
field of the vehicle_gps_position
message that are comparable. 由于精确度定义方法不同,例如 CEP 对比 1-sigma 等等,不同制造商的接收器可能很难做到这一点。
在设置过程中应检查以下条目:
- 验证第二接收器的数据是否存在。 This will be logged as
vehicle_gps_position_1
and can also be checked when connected via the nsh console using the commandlistener vehicle_gps_position -i 1
. The GPS_2_CONFIG parameter will need to be set correctly. - Check the
s_variance_m_s
,eph
andepv
data from each receiver and decide which accuracy metrics can be used. If both receivers output sensibles_variance_m_s
andeph
data, and GPS vertical position is not being used directly for navigation, then setting SENS_GPS_MASK to 3 is recommended. Where onlyeph
data is available and both receivers do not outputs_variance_m_s
data, set SENS_GPS_MASK to 2. Bit position 2 would only be set if the GPS had been selected as the reference height source with the EKF2_HGT_REF parameter and both receivers output sensibleepv
data. - The output from the blended receiver data is logged as
ekf_gps_position
, and can be checked whilst connect via the nsh terminal using the commandlistener ekf_gps_position
. - 如果接收器以不同的频率输出, 混合输出的频率将是较低的接收器的频率。 在可能的情况下,接收器应配置为同样的输出频率。
全球导航卫星系统性能要求
For the ECL to accept GNSS data for navigation, certain minimum requirements need to be satisfied over a period of time, defined by EKF2_REQ_GPS_H (10 seconds by default).
Minima are defined in the EKF2_REQ_* parameters and each check can be enabled/disabled using the EKF2_GPS_CHECK parameter.
下表显示了从全球导航卫星系统数据中直接报告或计算的各种衡量标准,以及ECL使用的数据的最低要求值。 In addition, the Average Value column shows typical values that might reasonably be obtained from a standard GNSS module (e.g. u-blox M8 series) - i.e. values that are considered good/acceptable.
指标 | 最小需求 | 平均值 | 单位 | 备注 |
---|---|---|---|---|
eph | < 3 (EKF2_REQ_EPH) | 0.8 | m | 水平位置误差的标准偏差 |
epv | < 5 (EKF2_REQ_EPV) | 1.5 | m | 垂直位置误差的标准偏差 |
Number of satellites | ≥6 (EKF2_REQ_NSATS) | 14 | - | |
sacc | < 0.5 (EKF2_REQ_SACC) | 0.2 | m/s | 水平速度误差的标准偏差 |
fix type | ≥ 3 | 4 | - | 0-1: 不修正, 2: 2D 修正, 3: 3D 修正, 4: RTCM 编码差分, 5: 实时动态定位, 浮动, 6: 实时动态定位, 固定, 8: 外推 |
PDOP | < 2.5 (EKF2_REQ_PDOP) | 1.0 | - | 精度降低位置 |
hpos drift rate | < 0.1 (EKF2_REQ_HDRIFT) | 0.01 | m/s | 根据所报告的全球导航卫星系统位置计算出的漂移率(在固定状态时)。 |
vpos drift rate | < 0.2 (EKF2_REQ_VDRIFT) | 0.02 | m/s | 根据所报告的全球导航卫星系统高度计算出的漂移率(在固定时)。 |
hspd | < 0.1 (EKF2_REQ_HDRIFT) | 0.01 | m/s | 所报告的全球导航卫星系统横向速度的筛选星等。 |
vspd | < 0.2 (EKF2_REQ_VDRIFT) | 0.02 | m/s | 所报告的全球导航卫星系统垂直速度的滤波量级。 |
INFO
The hpos_drift_rate
, vpos_drift_rate
and hspd
are calculated over a period of 10 seconds and published in the ekf2_gps_drift
topic. Note that ekf2_gps_drift
is not logged!
测距仪
Range finder distance to ground is used by a single state filter to estimate the vertical position of the terrain relative to the height datum.
The fusion modes of operation are controlled by EKF2_RNG_CTRL:
For more details about the configuration of height sources, click here.
Conditional range aiding
Conditional range finder fusion (a.k.a. Conditional range aid) activates the range finder fusion for height estimation during low speed/low altitude operation (in addition to the other active height sources). If the range finder is set as the reference height source (using EKF2_HGT_REF), the other active height sources such as baro and GNSS altitude will adjust their measurement to match the readings of the range finder over time. When the conditions are not met to start range aiding, a secondary reference is automatically selected.
INFO
Switching between height references causes the absolute altitude estimate to drift over time. This isn't an issue when flying in position mode but can be problematic if the drone is supposed to fly a mission at a specific GNSS altitude. If the absolute altitude drift is unwanted, it is recommended to set the GNSS altitude as the height reference, even when using conditional range aid.
It is primarily intended for takeoff and landing, in cases where the barometer setup is such that interference from rotor wash is excessive and can corrupt EKF state estimates.
Range aid may also be used to improve altitude hold when the vehicle is stationary.
TIP
Terrain Hold is recommended over Range Aid for terrain holding. This is because terrain hold uses the normal ECL/EKF estimator for determining height, and this is generally more reliable than a distance sensor in most conditions.
Conditional range aid is enabled by setting EKF2_RNG_CTRL = "Enabled (conditional mode)" (1).
It is further configured using the EKF2_RNG_A_
parameters:
- EKF2_RNG_A_VMAX: Maximum horizontal speed, above which range aid is disabled.
- EKF2_RNG_A_HMAX: Maximum height, above which range aid is disabled.
- EKF2_RNG_A_IGATE: Range aid consistency checks "gate" (a measure of the error before range aid is disabled).
Range height fusion
PX4 allows you to continuously fuse the range finder as a source of height (in any flight mode/vehicle type). This may be useful for applications when the vehicle is guaranteed to only fly over a near-flat surface (e.g. indoors).
When using a distance sensor as a height source, fliers should be aware:
Flying over obstacles can lead to the estimator rejecting rangefinder data (due to internal data consistency checks), which can result in poor altitude holding while the estimator is relying purely on accelerometer estimates.
INFO
This scenario might occur when a vehicle ascends a slope at a near-constant height above ground, because the rangefinder altitude does not change while that estimated from the accelerometer does. The EKF performs innovation consistency checks that take into account the error between measurement and current state as well as the estimated variance of the state and the variance of the measurement itself. If the checks fail the rangefinder data will be rejected, and the altitude will be estimated from the accelerometer and the other selected height sources (GNSS, baro, vision), if enabled and available After 5 seconds of inconsistent data if the distance sensor is the active source oh height data, the estimator resets the height state to match the current distance sensor data. If one or more other sources of height are active, the range finder is declared faulty and the estimator continues to estimate its height using the other sensors. The measurements might also become consistent again, for example, if the vehicle descends, or if the estimated height drifts to match the measured rangefinder height.
:::
The local NED origin will move up and down with ground level.
Rangefinder performance over uneven surfaces (e.g. trees) can be very poor, resulting in noisy and inconsistent data. This again leads to poor altitude hold.
The feature is enabled by setting EKF2_RNG_CTRL to "Enabled" (2). To make the range finder the height reference when active, set: EKF2_HGT_REF to "Range sensor".
TIP
To enable the range finder fusion only when the drone is stationary (in order to benefit from a better altitude estimate during takeoff and landing) but not fuse the range finder the rest of the time, use the conditional mode (1) of EKF2_RNG_CTRL.
Range Finder Obstruction Detection
The EKF can detect whether the rangefinder path-to-ground is obstructed (perhaps by a payload) using a kinematic consistency check between the vertical velocity estimate and the numerical derivative of the range finder data. If the range finder is statistically inconsistent with EKF2, the sensor is rejected for the rest of the flight unless the statistical test passes again for at least 1 second at a vertical speed of 0.5m/s or more.
The check is only enabled when the rangefinder is not used as the primary height source, and is only active while the vehicle is not moving horizontally (as it assumes a static ground height).
For effective obstruction detection, the range finder noise parameter needs to be tightly tuned using flight data. The kinematic consistency gate parameter can then be adjusted to obtain the desired fault detection sensitivity.
调整参数:
空速:
Equivalent Airspeed (EAS) data can be used to estimate wind velocity and reduce drift when GPS is lost by setting EKF2_ARSP_THR to a positive value. Airspeed data will be used when it exceeds the threshold set by a positive value for EKF2_ARSP_THR and the vehicle type is not rotary wing.
合成侧滑
Fixed-wing platforms can take advantage of an assumed sideslip observation of zero to improve wind speed estimation and also enable wind speed estimation without an airspeed sensor. This is enabled by setting the EKF2_FUSE_BETA parameter to 1.
基于阻力比力的多旋翼风场估计
多旋翼平台可以利用沿 X 和 Y 机体轴的空速和阻力之间的关系来估计风速的北/东分量。 This can be enabled using EKF2_DRAG_CTRL.
The relationship between airspeed and specific force (IMU accelerometer measurements) along the X and Y body axes is controlled by the EKF2_BCOEF_X, EKF2_BCOEF_Y and EKF2_MCOEF parameters which set the ballistic coefficients for flight in the X and Y directions, and the momentum drag produced by the propellers, respectively. The amount of specific force observation noise is set by the EKF2_DRAG_NOISE parameter.
以下方法可获得良好的调参参数:
- Fly once in Position mode repeatedly forwards/backwards/left/right/up/down between rest and maximum speed (best results are obtained when this testing is conducted in still conditions).
- Extract the .ulg log file using, for example, QGroundControl: Analyze > Log Download
INFO
The same .ulg log file can also be used to tune the static pressure position error coefficients.
::: 3. Use the log with the mc_wind_estimator_tuning.py Python script to obtain the optimal set of parameters.
光流
Optical flow data will be used if the following conditions are met:
- 有效的测距仪数据可用。
- EKF2_OF_CTRL is set.
- The quality metric returned by the flow sensor is greater than the minimum requirement set by the EKF2_OF_QMIN parameter.
For better performance, set the location of the optical flow sensor as described here.
If a stable hover can be achieved at low altitude above ground (< 10m) but slow oscillations occur at higher altitude, consider adjusting the optical flow scale factor.
外部视觉系统
Position, velocity or orientation measurements from an external vision system, e.g. Vicon, can be used.
The measurements that are fused are configured by setting the appropriate bits of EKF2_EV_CTRL to true
:
0
: Horizontal position data1
: Vertical position data. Height sources may additionally be configured using EKF2_HGT_REF (see section Height).2
: Velocity data3
: Yaw data
Note that if yaw data is used (bit 3) the heading is with respect to the external vision frame; otherwise the heading is relative to North.
EKF 要考虑视觉姿态估计的不确定性。 This uncertainty information can be sent via the covariance fields in the MAVLink ODOMETRY message or it can be set through the parameters EKF2_EVP_NOISE, EKF2_EVV_NOISE and EKF2_EVA_NOISE. You can choose the source of the uncertainty with EKF2_EV_NOISE_MD.
我如何启用 'ecl' 库中的 EKF ?
EKF2 is enabled by default (for more information see Switching State Estimators and EKF2_EN).
ecl EKF 和其它估计器相比的优点和缺点是什么?
与所有估计器一样,大部分性能来自调参以匹配传感器特性。 调参是准确性和鲁棒性之间的折衷,虽然我们试图提供满足大多数用户需求的调优,但是应用程序需要调整更改。
For this reason, no claims for accuracy relative to the legacy combination of attitude_estimator_q
+ local_position_estimator
have been made and the best choice of estimator will depend on the application and tuning.
缺点
- ecl EKF 是一种复杂的算法,需要很好地理解扩展卡尔曼滤波器理论及其应用于导航中的问题才能成功调参。 因此,不知道怎么修改,用户就很难得到好结果。
- ecl EKF 使用更多 RAM 和闪存空间。
- ecl EKF 使用更多的日志空间。
优势
- ecl EKF 能够以数学上一致的方式融合来自具有不同时间延迟和数据速率的传感器的数据,一旦正确设置时间延迟参数,就可以提高动态操作期间的准确性。
- ecl EKF 能够融合各种不同的传感器类型。
- 当 ecl EKF 检测并报告传感器数据中统计上显着的不一致性,将帮助诊断传感器错误。
- For fixed-wing operation, the ecl EKF estimates wind speed with or without an airspeed sensor and is able to use the estimated wind in combination with airspeed measurements and sideslip assumptions to extend the dead-reckoning time available if GPS is lost in flight.
- ecl EKF估计3轴加速度计偏差,这提高了尾座式无人机和其它机体在飞行阶段之间经历大的姿态变化时的精度。
- 联邦结构(组合姿态和位置/速度估计)意味着姿态估计受益于所有传感器测量。 如果调参正确,这应该提供改善态度估计的潜力。
如何检查 EKF 性能?
EKF 输出,状态和状态数据发布到许多 uORB 主题,这些主题在飞行期间记录到 SD 卡上。 The following guide assumes that data has been logged using the .ulog file format. The .ulog format data can be parsed in python by using the PX4 pyulog library.
Most of the EKF data is found in the EstimatorInnovations and EstimatorStatus uORB messages that are logged to the .ulog file.
A python script that automatically generates analysis plots and metadata can be found here. To use this script file, cd to the Tools/ecl_ekf
directory and enter python process_logdata_ekf.py <log_file.ulg>
. This saves performance metadata in a csv file named <log_file>.mdat.csv and plots in a pdf file named <log_file>.pdf
.
Multiple log files in a directory can be analysed using the batch_process_logdata_ekf.py script. When this has been done, the performance metadata files can be processed to provide a statistical assessment of the estimator performance across the population of logs using the batch_process_metadata_ekf.py script.
输出数据
- Attitude output data is found in the VehicleAttitude message.
- Local position output data is found in the VehicleLocalPosition message.
- Global (WGS-84) output data is found in the VehicleGlobalPosition message.
- Wind velocity output data is found in the Wind.msg message.
状态
Refer to states[24] in EstimatorStates. The index map for states[24] is as follows:
- [0 ... 3] Quaternions
- [4 ... 6] Velocity NED (m/s)
- [7 ... 9] Position NED (m)
- [10 ... 12] IMU delta angle bias XYZ (rad)
- [13 ... 15] IMU delta velocity bias XYZ (m/s)
- [16 ... 18] Earth magnetic field NED (gauss)
- [19 ... 21] Body magnetic field XYZ (gauss)
- [22 ... 23] Wind velocity NE (m/s)
状态方差
Refer to covariances[24] in EstimatorStates. The index map for covariances[24] is as follows:
- [0 ... 3] Quaternions
- [4 ... 6] Velocity NED (m/s)^2
- [7 ... 9] Position NED (m^2)
- [10 ... 12] IMU delta angle bias XYZ (rad^2)
- [13 ... 15] IMU delta velocity bias XYZ (m/s)^2
- [16 ... 18] Earth magnetic field NED (gauss^2)
- [19 ... 21] Body magnetic field XYZ (gauss^2)
- [22 ... 23] Wind velocity NE (m/s)^2
Observation Innovations & Innovation Variances
The observation estimator_innovations
, estimator_innovation_variances
, and estimator_innovation_test_ratios
message fields are defined in EstimatorInnovations.msg. 消息都有相同的字段名称/类型(但是单位不同)。
INFO
The messages have the same fields because they are generated from the same field definition. The # TOPICS
line (at the end of the file) lists the names of the set of messages to be created):
# TOPICS estimator_innovations estimator_innovation_variances estimator_innovation_test_ratios
一些观测值为:
- Magnetometer XYZ (gauss, gauss^2) :
mag_field[3]
- Yaw angle (rad, rad^2) :
heading
- True Airspeed (m/s, (m/s)^2) :
airspeed
- Synthetic sideslip (rad, rad^2) :
beta
- Optical flow XY (rad/sec, (rad/s)^2) :
flow
- Height above ground (m, m^2) :
hagl
- Drag specific force ((m/s)^2):
drag
- 速度和位置新息:每个传感器
此外,每个传感器都有其自己的字段,即横向和纵向位置和/或速度值(视情况而定)。 这些基本上是自我描述的,现摘录如下:
# GPS
float32[2] gps_hvel # horizontal GPS velocity innovation (m/sec) and innovation variance ((m/sec)**2)
float32 gps_vvel # vertical GPS velocity innovation (m/sec) and innovation variance ((m/sec)**2)
float32[2] gps_hpos # horizontal GPS position innovation (m) and innovation variance (m**2)
float32 gps_vpos # vertical GPS position innovation (m) and innovation variance (m**2)
# External Vision
float32[2] ev_hvel # horizontal external vision velocity innovation (m/sec) and innovation variance ((m/sec)**2)
float32 ev_vvel # vertical external vision velocity innovation (m/sec) and innovation variance ((m/sec)**2)
float32[2] ev_hpos # horizontal external vision position innovation (m) and innovation variance (m**2)
float32 ev_vpos # vertical external vision position innovation (m) and innovation variance (m**2)
# Fake Position and Velocity
float32[2] fake_hvel # fake horizontal velocity innovation (m/s) and innovation variance ((m/s)**2)
float32 fake_vvel # fake vertical velocity innovation (m/s) and innovation variance ((m/s)**2)
float32[2] fake_hpos # fake horizontal position innovation (m) and innovation variance (m**2)
float32 fake_vpos # fake vertical position innovation (m) and innovation variance (m**2)
# Height sensors
float32 rng_vpos # range sensor height innovation (m) and innovation variance (m**2)
float32 baro_vpos # barometer height innovation (m) and innovation variance (m**2)
# Auxiliary velocity
float32[2] aux_hvel # horizontal auxiliary velocity innovation from landing target measurement (m/sec) and innovation variance ((m/sec)**2)
float32 aux_vvel # vertical auxiliary velocity innovation from landing target measurement (m/sec) and innovation variance ((m/sec)**2)
输出互补滤波器
输出互补滤波器用于将状态从融合时间范围向前传播到当前时间。 To check the magnitude of the angular, velocity and position tracking errors measured at the fusion time horizon, refer to output_tracking_error[3]
in the ekf2_innovations
message.
索引映射如下:
- [0] 角度跟踪误差量级 (rad)
- [1] 速度跟踪误差量级(m/s)。 The velocity tracking time constant can be adjusted using the EKF2_TAU_VEL parameter. 减小此参数可减少稳态误差,但会增加 NED 速度输出上的观测噪声量。
- [2] 位置跟踪误差量级 (m)。 The position tracking time constant can be adjusted using the EKF2_TAU_POS parameter. 减小此参数可减少稳态误差,但会增加 NED 位置输出上的观测噪声量。
EKF 错误
EKF 包含针对严重条件状态和协方差更新的内部错误检查。 Refer to the filter_fault_flags
in EstimatorStatus.
观测错误
有两种类型观测错误:
- 数据丢失。 一个例子是测距仪无法提供返回数据。
- 新息,即状态预测和传感器观测之间的差异过度。 这种情况的一个例子是过度振动导致大的垂直位置误差,导致气压计高度测量被拒绝。
这两者都可能导致观测数据被拒绝,如果时间足够长,使得 EKF 尝试重置状态以使用传感器观测数据。 所有观测结果均对新息进行了统计置信度检查。 The number of standard deviations for the check are controlled by the EKF2_*_GATE
parameter for each observation type.
Test levels are available in EstimatorStatus as follows:
mag_test_ratio
: ratio of the largest magnetometer innovation component to the innovation test limitvel_test_ratio
: ratio of the largest velocity innovation component to the innovation test limitpos_test_ratio
: ratio of the largest horizontal position innovation component to the innovation test limithgt_test_ratio
: ratio of the vertical position innovation to the innovation test limittas_test_ratio
: ratio of the true airspeed innovation to the innovation test limithagl_test_ratio
: ratio of the height above ground innovation to the innovation test limit
For a binary pass/fail summary for each sensor, refer to innovation_check_flags in EstimatorStatus.
GPS 数据质量检查
在开始 GPS 辅助之前,EKF 应用了许多 GPS 数据质量检查。 These checks are controlled by the EKF2_GPS_CHECK and EKF2_REQ_*
parameters. The pass/fail status for these checks is logged in the EstimatorStatus.gps_check_fail_flags message. 当所有所需的 GPS 检查通过后,此整数将为零。 If the EKF is not commencing GPS alignment, check the value of the integer against the bitmask definition gps_check_fail_flags
in EstimatorStatus.
EKF 数值误差
EKF 对其所有计算使用单精度浮点运算,并使用一阶近似来推导协方差预测和更新方程,以降低处理要求。 这意味着,当重新调整 EKF 时,可能遇到协方差矩阵运算条件恶劣,足以导致状态估计中的发散或显著错误的情况。
为防止这种情况,每个协方差和状态更新步骤都包含以下错误检测和更正步骤:
- 如果新息方差小于观测方差(这需要一个不可能的负值状态方差)或协方差更新将为任何一个状态产生负值方差,那么:
- 跳过状态和协方差更新
- 协方差矩阵中的相应行和列被重置
- The failure is recorded in the EstimatorStatus
filter_fault_flags
message
- 状态方差(协方差矩阵中的对角线)被限制为非负。
- 状态方差应用数值上限。
- 协方差矩阵强制对称。
After re-tuning the filter, particularly re-tuning that involve reducing the noise variables, the value of estimator_status.gps_check_fail_flags
should be checked to ensure that it remains zero.
如果高度估计值发散了怎么办?
在飞行期间 EKF 高度偏离 GPS 和高度计测量的最常见原因是由振动引起的 IMU 测量的削波和/或混叠。 如果发生这种情况,则数据中应显示以下迹象
- EstimatorInnovations.vel_pos_innov[2] and EstimatorInnovations.vel_pos_innov[5] will both have the same sign.
- EstimatorStatus.hgt_test_ratio will be greater than 1.0
建议第一步是确保使用有效的隔离安装系统将无人机与机身隔离。 隔离安装座具有 6 个自由度,因此具有 6 个谐振频率。 作为一般规则,隔离支架上的自动驾驶仪的 6 个共振频率应高于 25Hz,以避免与无人机动力学相互作用并低于电动机的频率。
如果谐振频率与电动机或螺旋桨叶片通过频率一致,则隔离安装件会使振动更严重。
通过进行以下参数更改,可以使 EKF 能更加抵御振动引起的高度发散:
- 将主要的高度传感器的新息门槛的值加倍。 If using barometric height this is EKF2_BARO_GATE.
- Increase the value of EKF2_ACC_NOISE to 0.5 initially. 如果仍然出现发散,则进一步增加 0.1,但不要超过 1.0。
注意 这些变化的影响将使 EKF 对 GPS 垂直速度和气压的误差更敏感。
如果位置估计发散了应该怎么办?
位置发散的最常见原因是:
- 高振动级别。
- 通过改进无人机的机械隔离来解决。
- Increasing the value of EKF2_ACC_NOISE and EKF2_GYR_NOISE can help, but does make the EKF more vulnerable to GPS glitches.
- 过大的陀螺仪偏差偏移。
- 通过重新校准陀螺仪来修复。 检查过度温度灵敏度(> 3 deg/sec 偏差在从冷机开始热启动时发生变化,如果受隔热影响以减缓温度变化的速度,则替换传感器。
- 不好的偏航对齐
- 检查磁力计校准和对齐。
- 检查显示的航向 QGC 是否在 15 度以内
- GPS 精度差
- 检查是否有干扰
- 改善隔离和屏蔽
- 检查飞行位置是否有 GPS 信号障碍物和反射器(附近的高层建筑)
- GPS 数据丢失
确定其中哪一个是主要原因需要对 EKF 日志数据进行系统分析:
- Plot the velocity innovation test ratio - EstimatorStatus.vel_test_ratio
- Plot the horizontal position innovation test ratio - EstimatorStatus.pos_test_ratio
- Plot the height innovation test ratio - EstimatorStatus.hgt_test_ratio
- Plot the magnetometer innovation test ratio - EstimatorStatus.mag_test_ratio
- Plot the GPS receiver reported speed accuracy - SensorGps.msg.s_variance_m_s
- Plot the IMU delta angle state estimates - EstimatorStatus.states[10], states[11] and states[12]
- 绘制 EKF 内部高频振动指标:
- Delta angle coning vibration - EstimatorStatus.vibe[0]
- High frequency delta angle vibration - EstimatorStatus.vibe[1]
- High frequency delta velocity vibration - EstimatorStatus.vibe[2]
在正常操作期间,所有测试比率应保持在 0.5 以下,并且只有偶然的峰值高于此值,如下面成功飞行中的示例所示:
下图显示了具有良好隔离的多旋翼飞行器的 EKF 振动指标。 可以看到着陆冲击和起飞和着陆期间增加的振动。 如果收集的数据不足,使用这些指标无法提供有关最大阈值的具体建议。
上述振动指标的数值有限值,因为在接近 IMU 采样频率的频率下存在的振动(大多数电路板为 1kHz)将导致在高频振动指标中未显示的数据中出现偏移。 检测混叠误差的唯一方法是它们对惯性导航精度和新息水平的提高。
除了生成 > 1.0 的大的位置和速度测试比率外,不同的误差机制还以不同的方式影响其它测试比率:
确定过度振动
高振动级别通常会影响垂直位置和速度新息以及水平分量。 磁力计测试级别仅受到很小程度的影响。
(在此插入示例绘图显示不好振动)
确定过度的陀螺偏差
大的陀螺偏差偏移通常的特征是在飞行期间增量角度偏差值的变化大于 5E-4(相当于 ~3 度/秒),并且如果偏航轴受到影响,也会导致磁强计测试比大幅增加。 除极端情况外,高度通常不受影响。 如果滤波器在飞行前给定时间稳定,则可以容忍接通最高 5 度/秒的偏差值。 如果位置发散,飞手进行的飞行前检查应防止解锁。
(在此插入示例图表显示不好的陀螺偏差)
确定较差的偏航精度
由于惯性导航和 GPS 测量计算出的速度方向不一致,因此不良偏航对准导致无人机开始移动时速度测试比率迅速增加。 磁强计的新息受到轻微影响。 高度通常不受影响。
(在此插入示例绘图显示不好的偏航对齐)
确定较差的GPS 数据精度
GPS 数据精度差通常伴随着接收器报告的速度误差的增加以及新息的增加。 由多路径,遮蔽和干扰引起的瞬态误差是更常见的原因。 下面是一个暂时失去 GPS 数据精度的例子,其中多旋翼飞行器开始从其游荡位置漂移并且必须使用摇杆进行校正。 The rise in EstimatorStatus.vel_test_ratio to greater than 1 indicates the GPs velocity was inconsistent with other measurements and has been rejected.
这伴随着 GPS 接收器报告的速度精度的上升,这表明它可能是 GPS 误差。
如果我们还看一下 GPS 水平速度新息和新息差异,我们可以看到北向速度新息伴随着这次 GPS “故障”事件的大幅增长。
确定 GPS 数据的丢失
GPS 数据的丢失将通过速度和位置新息测试比率 'flat-lining' 来显示。 If this occurs, check the other GPS status data in vehicle_gps_position
for further information.
The following plot shows the NED GPS velocity innovations ekf2_innovations_0.vel_pos_innov[0 ... 2]
, the GPS NE position innovations ekf2_innovations_0.vel_pos_innov[3 ... 4]
and the Baro vertical position innovation ekf2_innovations_0.vel_pos_innov[5]
generated from a simulated VTOL flight using SITL Gazebo.
模拟的 GPS 在 73 秒时失锁。 注意 GPS 丢失后,NED 速度新息和 NE 位置新息 'flat-line' 。 注意在没有 GPS 数据的 10 秒后,EKF 使用最后的已知位置恢复到静态位置模式,并且 NE 位置新息开始再次改变。
气压计地面效应补偿
如果机体在降落期间在靠近地面时往往爬升回到空中, 最可能的原因是气压计地面效应。
这种情况是在推进器向地面推进并在无人机下空形成高压区时造成的。 其结果是降低了对压力高度的解读,从而导致了不必要的爬升。 下图显示了存在地面效应的典型情况。 注意气压计信号如何在飞行开始和结束时消失。
You can enable ground effect compensation to fix this problem:
- 从绘图中估算出气压计在起飞或着陆期间的跌落程度。 在上面的绘图中,人们可以看到降落过程中大约6米的气压计下沉。
- Then set the parameter EKF2_GND_EFF_DZ to that value and add a 10 percent margin. 因此,在这种情况下,6.6米的数值将是一个良好的起点。
If a terrain estimate is available (e.g. the vehicle is equipped with a range finder) then you can additionally specify EKF2_GND_MAX_HGT, the above ground-level altitude below which ground effect compensation should be activated. 如果没有可用的地形估计,这个参数将不会产生任何效果,系统将使用继承法来确定是否应激活地面效果补偿。
更多信息
- PX4 State Estimation Overview, PX4 Developer Summit 2019, Dr. Paul Riseborough): Overview of the estimator, and major changes from 2018/19, and the expected improvements through 2019/20.