CUAV Pixhawk V6X
WARNING
PX4 does not manufacture this (or any) autopilot. Contact the manufacturer for hardware support or compliance issues.
Pixhawk V6X® is the latest update to the successful family of Pixhawk® flight controllers designed and made in collaboration with CUAV® and the PX4 team.
It is based on the Pixhawk® Autopilot FMUv6X Standard, Autopilot Bus Standard, and Connector Standard.
TIP
This autopilot is supported by the PX4 maintenance and test teams.
Pixhawk® V6X brings you the ultimate in performance, stability and reliability in all aspects.
- Arm® Cortex®-M7 processor (STM32H753) with Floating Point Unit (FPU), 480MHz high-speed operations and 2MB flash. Developers can be more productive and efficient, allowing for more complex algorithms and models.
- High-performance on-board, low-noise IMU and automotive-grade magnetic compass based on FMUv6X open standard. It aims to achieve better stability and anti-interference ability.
- Triple redundant IMU & double redundant barometer on separate buses. When the PX4 Autopilot detects a sensor failure, the system seamlessly switches to another to maintain flight control reliability.
- An independent LDO powers every sensor set with independent power control. A vibration isolation System to filter out high-frequency vibration and reduce noise to ensure accurate readings, allowing vehicles to reach better overall flight performances.
- External sensor bus (SPI5) has two chip select lines and data-ready signals for additional sensors and payload with SPI-interface.
- Integrated Microchip Ethernet PHY for high-speed communication over Ethernet with onboard devices such as mission computers.
- Newly designed vibration isolation system to filter out high frequency vibration and reduce noise to ensure accurate readings.
- IMUs are temperature-controlled by onboard heating resistors, allowing optimum working temperature of IMUs 
- Modular flight controller: separated IMU, FMU, and Base system connected by a 100-pin & a 50-pin Pixhawk® Autopilot Bus connector.
The Pixhawk® V6X is ideal for corporate research labs, academic research and commercial applications.
Processors & Sensors
- FMU Processor: STM32H753
- 32 Bit Arm® Cortex®-M7, 480MHz, 2MB flash memory, 1MB RAM
- IO Processor: STM32F103
- 32 Bit Arm® Cortex®-M3, 72MHz, 20KB SRAM
- 내장 센서 :
- Accel/Gyro: BMI088
- Accel/Gyro: ICM-42688-P
- Accel/Gyro: ICM-20649
- Mag: RM3100
- Barometer: 2x ICP-20100
Electrical data
- Voltage Ratings:
- Max input voltage: 5.7V
- USB Power Input: 4.75~5.25V
- Servo Rail Input: 0~9.9V
- Current Ratings:
- TELEM1 and GPS2 combined output current limiter: 1.5A
- All other port combined output current limiter: 1.5A
인터페이스
- 16- PWM servo outputs
- 1 Dedicated R/C input for Spektrum / DSM and S.Bus with analog / PWM RSSI input
- 3 TELEM Ports(with full flow control)
- 1 UART4(Seial and I2C)
- 2 GPS ports
- 1 full GPS plus Safety Switch Port(GPS1)
- 1 basic GPS port(with I2C,GPS2)
- 2 USB Ports
- 1 TYPE-C
- JST GH1.25
- 1 Ethernet port
- Transformerless Applications
- 100Mbps
- 1 SPI bus
- 2 chip select lines
- 2 data-ready lines
- 1 SPI SYNC line
- 1 SPI reset line
- 2 CAN Buses for CAN peripheral
- CAN Bus has individual silent controls or ESC RX-MUX control
- 4 power input ports
- 2 Dronecan/UAVCAN power inputs
- 2 SMBUS/I2C power inputs
- 1 AD & IO port
- 2 additional analog input(3.3 and 6.6v)
- 1 PWM/Capture input
- 2 Dedicated debug
- FMU debug
- IO 디버그
Mechanical data
중량
- Flight Controller Module: 99g
- Core module: 43g
- Baseboard: 56g
Operating & storage temperature: -20 ~ 85°c
Size
Flight controller
Core module
구매처
Order from CUAV.
조립 및 설정
The Pixhawk V6X Wiring Quick Start provides instructions on how to assemble required/important peripherals including GPS, Power Module etc.
핀배열
참고:
- The camera capture pin (
PI0
) is pin 2 on the AD&IO port, marked above asFMU_CAP1
.
시리얼 포트 매핑
UART | 장치 | 포트 |
---|---|---|
USART1 | /dev/ttyS0 | GPS |
USART2 | /dev/ttyS1 | TELEM3 |
USART3 | /dev/ttyS2 | 디버그 콘솔 |
UART4 | /dev/ttyS3 | UART4 |
UART5 | /dev/ttyS4 | TELEM2 |
USART6 | /dev/ttyS5 | PX4IO/RC |
UART7 | /dev/ttyS6 | TELEM1 |
UART8 | /dev/ttyS7 | GPS2 |
정격 전압
Pixhawk V6X can be triple-redundant on the power supply if three power sources are supplied. The three power rails are: POWERC1/POWER1, POWERC2/POWER2 and USB.
- POWER C1 and POWER C2 are DroneCAN/UAVCAN battery interfaces (recommended);POWER1 and POWER2 are SMbus/I2C battery interfaces (backup).
- POWER C1 and POWER1 use the same power switch, POWER C2 and POWER2 use the same power switch.
Normal Operation Maximum Ratings
이러한 조건에서 전원은 아래의 순서대로 시스템에 전원을 공급하여야합니다.
- POWER C1, POWER C2, POWER1 and POWER2 inputs (4.75V to 5.7V)
- USB input (4.75V to 5.25V)
Absolute Maximum Ratings
아래의 조건에서 시스템은 전원을 사용하지 않지만(작동하지 않음), 그대로 유지됩니다.
- POWER1 and POWER2 inputs (operational range 4.7V to 5.7V, 0V to 10V undamaged)
- USB input (operational range 4.7V to 5.7V, 0V to 6V undamaged)
- Servo input:
VDD_SERVO
pin of FMU PWM OUT and I/O PWM OUT (0V to 42V undamaged)
Voltage monitoring
Digital DroneCAN/UAVCAN battery monitoring is enabled by default (see Quickstart > Power).
INFO
Analog battery monitoring via an ADC is not supported on this particular board, but may be supported in variations of this flight controller with a different baseboard.
펌웨어 빌드
TIP
Most users will not need to build this firmware! It is pre-built and automatically installed by QGroundControl when appropriate hardware is connected.
To build PX4 for this target:
make px4_fmu-v6x_default
디버그 포트
The PX4 System Console and SWD interface run on the FMU Debug port.
The pinouts and connector comply with the Pixhawk Debug Full interface defined in the Pixhawk Connector Standard interface (JST SM10B connector).
핀 | 신호 | 전압 |
---|---|---|
1(red) | Vtref | +3.3V |
2 (흑) | Console TX (OUT) | +3.3V |
3 (흑) | Console RX (IN) | +3.3V |
4 (흑) | SWDIO | +3.3V |
5 (흑) | SWCLK | +3.3V |
6 (흑) | SWO | +3.3V |
7 (흑) | NFC GPIO | +3.3V |
8 (blk) | PH11 | +3.3V |
9 (blk) | nRST | +3.3V |
10 (blk) | GND | GND |
이 포트의 배선과 사용 정보는 다음을 참조하십시오.
- PX4 System Console (Note, the FMU console maps to USART3).
- SWD Debug Port
주변 장치
지원 플랫폼 및 기체
일반 RC 서보 또는 Futaba S-Bus 서보로 제어 가능한 모든 멀티콥터/비행기/로버 또는 보트. The complete set of supported configurations can be seen in the Airframes Reference.